1887

Abstract

Human adenovirus early region 1A (E1A) proteins act as transcriptional regulators and function in the control of DNA synthesis and cell transformation. Little is known about how these viral products are functionally regulated. E1A proteins of adenovirus serotype 5 (Ad5) are phosphorylated at several serine residues and previous studies had indicated that both Ser-89 and Ser-219 are substrates for one or more of the cdc2 family of cell cycle kinases. A second residue near the amino terminus, Ser-96, may also be a site. Although phosphorylation of Ser-89 causes a major shift in gel mobility, the effect on E1A biological activity is unclear. In the present studies we have shown by mutational analysis that phosphorylation at Ser-89 also regulates phosphorylation at Ser-96, suggesting that the gel mobility shift is the result of multiple phosphorylation events. Phosphorylation at Ser-89 did not seem to affect E1A-mediated repression of the simian virus 40 enhancer or trans-activation of the E3 promoter significantly, but it did appear to have a modest but significant effect on transformation of primary baby rat kidney cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-583
1993-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040583.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-583&mimeType=html&fmt=ahah

References

  1. Bagchi S., Weinmann R., Raychauduri P. 1991; The retinoblastoma protein copurifies with E2F-1, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65:1063–1072
    [Google Scholar]
  2. Bandara L. R., La Thangue N. B. 1991; Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature, London 351:494–497
    [Google Scholar]
  3. Bandara L. R., Adamczewski J. P., Hunt T., La Thangue N. B. 1991; Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature, London 352:249–251
    [Google Scholar]
  4. Barbeau D., Marcellus R. C., Bacchetti S., Bayley S. T., Branton P. E. 1992; Quantitative analysis of regions of adenovirus E1A products involved in interactions with cellular proteins. Biochemistry and Cell Biology (in press)
    [Google Scholar]
  5. Berk A. J., Sharp P. A. 1978; Structure of the adenovirus 2 early mRNAs. Cell 14:695–711
    [Google Scholar]
  6. Boyle W. J., van der Geer P., Hunter T. 1991; Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods in Enzymology. 201:110–149
    [Google Scholar]
  7. Branton P. E., Rowe D. T. 1985; Stabilities and interrelations of multiple species of human adenovirus type 5 early region 1 proteins in infected and transformed cells. Journal of Virology 56:633–638
    [Google Scholar]
  8. Branton P. E., Lassam N. J., Downey J. F., Yee S. P., Graham F. L., Mak S., Bayley S. T. 1981; Protein kinase activity immunoprecipitated from adenovirus-infected cells by sera from tumor-bearing hamsters. Journal of Virology 37:601–608
    [Google Scholar]
  9. Branton P. E., Evelegh M., Rowe D. T., Graham F. L., Bacchetti S. 1985; Protein kinase and ATP-binding activity associated with the 72-kdalton single-stranded DNA-binding protein from early region 2A of human adenovirus type 5. Canadian Journal of Biochemistry 63:941–952
    [Google Scholar]
  10. Cao L., Faha B., Dembski J., Tsai L. H., Harlow E., Dyson N. 1992; Independent binding of the retinoblastoma proteins and pl07 to transcription factor E2F. Nature, London 355:176–179
    [Google Scholar]
  11. Chellapan S., Hiebert S., Mudryj M., Horowitz J. M., Nevins J. R. 1991; The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061
    [Google Scholar]
  12. Chittenden T., Livingston D. M., Kaelin W. GJ. 1991; The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65:1073–1082
    [Google Scholar]
  13. Chow L. T., Broker T. R., Lewis J. B. 1979; Complex splicing patterns of RNAs from the early regions of adenovirus 2. Journal of Molecular Biology 141:249–265
    [Google Scholar]
  14. Devoto S. H., Mudryj M., Pines J., Hunter T., Nevins J. R. 1992; A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell 68:167–176
    [Google Scholar]
  15. Dumont D. J., Branton P. E. 1992; Phosphorylation of adenovirus E1A proteins by the p34cdc2 protein kinase. Virology 189:111–120
    [Google Scholar]
  16. Dumont D. J., Tremblay M. L., Branton P. E. 1989; Phosphorylation at serine-89 induces a shift in gel mobility but has little effect on function of adenovirus type 5 E1A proteins. Journal of Virology 63:987–991
    [Google Scholar]
  17. Egan C., Jelsma T. N., Howe J. A., Bayley S. T., Ferguson B., Branton P. E. 1988; Mapping of binding sites for cellular proteins on the products of early region 1A of human adenovirus type 5. Molecular and Cellular Biology 8:3955–3959
    [Google Scholar]
  18. Egan C., Bayley S. T., Branton P. E. 1989; Binding of the Rbl protein to E1A products is required for adenovirus transformation. Oncogene 4:383–388
    [Google Scholar]
  19. Ewen M. E., Xing Y., Lawrence J. B., Livingston D. M. 1991; Molecular cloning, chromosomal mapping, and expression of the cDNA for pi07, a retinoblastoma gene product-related protein. Cell 66:1155–1164
    [Google Scholar]
  20. Ewen M. E., Faha B., Harlow E., Livingston D. M. 1992; Interaction of pl07 with cyclin A independent of complex with viral oncoproteins. Science 255:85–87
    [Google Scholar]
  21. Faha B., Ewen M. E., Tsai L. H., Livingston D. M., Harlow E. 1992; Interaction between human cyclin A and adenovirus E1A-associated pl07 protein. Science 255:87–90
    [Google Scholar]
  22. Giordano A., Whyte P., Harlow E., Franza B. RJ., Beach D., Draetta G. 1989; A 60 kd cdc2-associated polypeptide complexes with the E1A proteins in adenovirus-infected cells. Cell 58:981–990
    [Google Scholar]
  23. Giordano A., Lee J. H., Scheppler J. A., Herrmann C., Harlow E., Deuschle U., Beach D., Franza J. R. J. 1991; Cell cycle regulation of histone HI kinase activity associated with the adenoviral protein E1A. Science 235:1271–1275
    [Google Scholar]
  24. Gorman C. M, Moffat L. F, Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  25. Graham F. L, van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  26. Graham F. L, Smiley J., Russell W. C, Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–72
    [Google Scholar]
  27. Harlow E., Franza B. R Jr, Schley C. 1985; Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. Molecular and Cellular Biology 55:533–546
    [Google Scholar]
  28. Harlow E., Whyte P., Franza B. R. J., Schley C. 1986; Association of adenovirus early-region la proteins with cellular polypeptides. Molecular and Cellular Biology 6:1579–1589
    [Google Scholar]
  29. Hen R., Borrelli E., Chambon P. 1985; Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230:1391–1394
    [Google Scholar]
  30. Herrmann C. H, Su L. K, Harlow E. 1991; Adenovirus E1A is associated with a serine/threonine protein kinase. Journal of Virology 65:5848–5859
    [Google Scholar]
  31. Howe J. A, Bayley S. T. 1992; Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 186:15–24
    [Google Scholar]
  32. Howe J. E, Mymryk J. S, Egan C., Branton P. E, Bayley S. T. 1990; Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proceedings of the National Academy of Sciences, U.S.A. 87:5883–5887
    [Google Scholar]
  33. Jelsma T. N., Howe J. A., Evelegh C. M., Cunniff N. F., Skiadopoulos M. H., Floroff M. R., Denman J. E., Bayley S. T. 1988; Use of deletion and point mutants spanning the coding region of the adenovirus 5 E1A gene to define a domain that is essential for transcriptional activation. Virology 163:494–502
    [Google Scholar]
  34. Jelsma T. N., Howe J. A., Mymryk J. A, Evelegh C. M., Cunniff NF. A, Bayley S. T. 1989; Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 171:120–130
    [Google Scholar]
  35. Kitchingman G. R., Westphal H. 1980; The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. Journal of Molecular Biology 137:23–48
    [Google Scholar]
  36. Kuppuswamy M. N., Chinnadurai G. 1987; Relationship between the transforming and transcriptional regulatory functions of adenovirus 2 E1a oncogene. Virology 159:31–38
    [Google Scholar]
  37. Lassam N. J., Bayley S. T., Graham F. L., Branton P. E. 1979; Immunoprecipitation of protein kinase activity from adenovirus 5-infected cells using antiserum directed against tumor antigens. Nature, London 277:241–243
    [Google Scholar]
  38. Lee W. S., Kao C., Bryant G. O., Liu X., Berk A. S. 1991; Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376
    [Google Scholar]
  39. Lillie J. W., Green M. R. 1989; Transcription activation by the adenovirus. Nature, London 338:39–14
    [Google Scholar]
  40. Lillie J. W., Green M., Green M. R. 1986; An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043–1051
    [Google Scholar]
  41. Lillie J. W., Loewenstein P. M., Green M. R., Green M. 1987; Functional domains of adenovirus type 5 E1a proteins. Cell 50:1091–1100
    [Google Scholar]
  42. Liu F., Green M. R. 1990; A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. Cell 61:1217–1224
    [Google Scholar]
  43. Moran E., Mathews M. B. 1987; Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178
    [Google Scholar]
  44. Moran E., Zerler B., Harrison T. M., Mathews M. B. 1986; Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Molecular and Cellular Biology 6:3740–3480
    [Google Scholar]
  45. Moreno S., Nurse P. 1990; Substrates for p34cdc2: in vivo veritas?. Cell 61:549–551
    [Google Scholar]
  46. Mudryj M., Devoto S. H., Hiebert S. W., Hunter T., Pines J., Nevins J. R. 1991; Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:275–280
    [Google Scholar]
  47. Perricaudet M., Akusjarvi G., Virtanen A., Pettersson U. 1979; Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature, London 281:694–696
    [Google Scholar]
  48. Pines J., Hunter T. 1990; Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. (1990). Nature, London 346:760–763
    [Google Scholar]
  49. Pöpperl H., Featherstone M.S. 1992; An autoregulatory element of the murine Hox-4-2 gene. EMBO Journal 11:3673–3680
    [Google Scholar]
  50. Richter J. D., Young P., Jones N. C., Krippl B., Rosenberg M., Ferguson B. 1985; A first exon-encoded domain of E1A sufficient for post-translational modification, nuclear localization, and induction of adenovirus E3 promoter expression in Xenopus oocytes. Proceedings of the National Academy of Sciences, U.S.A. 82:8434–8438
    [Google Scholar]
  51. Richter J. D., Slavicek J. M., Schneider J. F., Jones N. C. 1988; Heterogeneity of adenovirus type 5 E1A proteins: multiple serine phosphorylations induce slow-migrating electrophoretic variants but do not affect E1A-induced transcriptional activation or transformation. Journal of Virology 62:1948–1955
    [Google Scholar]
  52. Rikitake Y., Moran E. 1992; DNA-binding properties of the E1A-associated 300-kilodalton protein. Molecular and Cellular Biology 12:2826–2836
    [Google Scholar]
  53. Rowe D. T., Graham F. L., Branton P. E. 1983; Intracellular localization of adenovirus type 5 tumor antigens in productively infected cells. Virology 129:456–468
    [Google Scholar]
  54. Schneider J. F., Fisher F., Goding C., Jones N. C. 1987; Mutational analysis of the adenovirus E1A gene: the role of transcriptional regulation in transformation. EMBO Journal 6:2053–2060
    [Google Scholar]
  55. Shih C., Weinberg R.A. 1982; Isolation and transforming sequence from a human bladder carcinoma cell line. Cell 29:161–169
    [Google Scholar]
  56. Smith C. F., Debouck C., Rosenberg M., Culp J.S. 1989; Phosphorylation of serine residue 89 of human adenovirus E1A proteins is responsible for their characteristic electrophoretic mobility shifts, and its mutation affects biological function. Journal of Virology 63:1569–1577
    [Google Scholar]
  57. Stein R. W., Corrigan M., Yaciuk P., Whelan J., Moran E. 1990; Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. Journal of Virology 64:4421–1427
    [Google Scholar]
  58. Stephens C., Harlow E. 1987; Differential splicing yields novel adenovirus 5 mRNAs that encode 30 and 35 kd proteins. EMBO Journal 6:2027–2035
    [Google Scholar]
  59. Svensson C., Bondesson M., Nyberg E., Linder S., Jones N., Akusjarvi G. 1991; Independent transformation activity by adenovirus-5 E1A-conserved regions 1 or 2 mutants. Virology 182:553–561
    [Google Scholar]
  60. Tremblay M. L., McGlade C. J., Gerber G. E., Branton P. E. 1988; Identification of the phosphorylation sites in the early region 1A proteins of adenovirus type 5 by analysis of proteolytic peptides and amino acid sequencing. Journal of Biological Chemistry 263:6375–6383
    [Google Scholar]
  61. Tremblay M. L., Dumont D. J., Branton P. E. 1989; Analysis of phosphorylation sites in the exon 1 region of E1A proteins of human adenovirus type 5. Virology 169:397–407
    [Google Scholar]
  62. Tsai L.-H, Harlow E., Meyerson M. 1991; Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature, London 353:174–177
    [Google Scholar]
  63. Tsukamoto A. S., Ponticelli A., Berk A. J., Gaynor R. B. 1986; Genetic mapping of a major site of phosphorylation in adenovirus type 2 E1A proteins. Journal of Virology 59:14–22
    [Google Scholar]
  64. Ulfendahl P. J., Linder S., Kreivi J. P., Nordqvist K., Svensson C., Hultberg H., Akusjarvi G. 1987; A novel adenovirus 2 E1A mRNA encoding a protein with transcription activation properties. EMBO Journal 6:2037–2044
    [Google Scholar]
  65. Velcich A., Ziff E. 1988; Adenovirus E1A ras cooperation activity is separable from its positive and negative transcription regulatory functions. Molecular and Cellular Biology 8:2177–2183
    [Google Scholar]
  66. Weeks D. L., Jones N. C. 1983; E1A control of gene expression is mediated by sequences 5' to the transcriptional starts of the early viral genes. Molecular and Cellular Biology 3:1222–1234
    [Google Scholar]
  67. Whyte P., Buchkovich K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. 1988a; Association between an oncogene and an antioncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature, London 334:124–128
    [Google Scholar]
  68. Whyte P., Ruley H. E., Harlow E. 19886; Two regions of the adenovirus early region 1A proteins are required for transformation. Journal of Virology 62:257–265
    [Google Scholar]
  69. Whyte P., Williamson N. M., Harlow E. 1989; Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75
    [Google Scholar]
  70. Yaciuk P., Moran E. 1991; Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Molecular and Cellular Biology 11:5389–5397
    [Google Scholar]
  71. Yee S. P., Branton P. E. 1985; Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147:142–153
    [Google Scholar]
  72. Yee S. P., Rowe D. T., Tremblay M. L., McDermott M., Branton P. E. 1983; Identification of human adenovirus early region 1 products using antisera against synthetic peptides corresponding to the predicted carboxy termini. Journal of Virology 46:1003–1013
    [Google Scholar]
  73. Zerler B., Roberts R. J., Mathews M. B., Moran E. 1987; Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Molecular and Cellular Biology 7:821–829
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-583
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-583
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error