Selective effects on adenovirus late gene expression of deleting the E1b 55K protein Free

Abstract

The E1b gene of human adenovirus 5 (Ad5) encodes a 55K product previously shown to be required for the efficient accumulation of mRNAs derived from the major late primary transcript in the cytoplasm of infected cells. This finding is extended here to include the transcripts from other viral promoters activated during the late phase of infection. Conversely, accumulation of mRNA derived from the major late promoter at early times is not dependent on this E1b function. Cytoplasmic levels of the various differentially spliced products of the major late unit are not equally dependent on the E1b 55K protein. Rather, the longest mRNA species within each 3′-coterminal family shows the greatest dependence. These findings support a model in which the Ad5 E1b 55K protein acts to facilitate the movement of mature viral mRNA away from the nuclear matrix of the infected cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-575
1993-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040575.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-575&mimeType=html&fmt=ahah

References

  1. Akusjarvi G., Persson H. 1981; Controls of RNA splicing and termination in the major late adenovirus transcription unit. Nature, London 292:420–426
    [Google Scholar]
  2. Babiss L. E., Ginsberg H. S., Darnell J. E. 1985; Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Molecular and Cellular Biology 5:2552–2558
    [Google Scholar]
  3. Blobel G. 1985; Gene gating: a hypothesis. Proceedings of the National Academy of Sciences, U.S.A. 82:8527–8529
    [Google Scholar]
  4. Bridge E., Ketner G. 1989; Redundant control of adenovirus late gene expression by early region. Journal of Virology 63:631–638
    [Google Scholar]
  5. Chang D. D., Sharp P. A. 1989; Regulation by HIV rev depends upon recognition of splice sites. Cell 59:789–795
    [Google Scholar]
  6. Chang D. D., Sharp P. A. 1990; Messenger RNA transport and HIV rev regulation. Science 249:614–615
    [Google Scholar]
  7. Chow L. T., Broker T. R., Lewis J. B. 1979; Complex splicing patterns of RNAs from the early regions of adenovirus 2. Journal of Molecular Biology 134:265–615
    [Google Scholar]
  8. Chroboczek J., Bieber F., Jacrot B. 1992; The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186:280–285
    [Google Scholar]
  9. Ciejek E. M., Nordstrom J. L., Tsai M. J., O’Malley B. W. 1982; Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry 21:4945–1953
    [Google Scholar]
  10. Crossland L. D., Nordstrom J. L., Tsai M. J., O’Malley B. W. 1982; Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry 21:4945–1953
    [Google Scholar]
  11. Cullen B. R., Greene W. C. 1989; Regulatory pathways governing HIV-1 replication. Cell 58:423–426
    [Google Scholar]
  12. Cutt J. R., Shenk T., Hearing P. 1987; Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. Journal of Virology 61:543–552
    [Google Scholar]
  13. Flint S. J. 1986; Regulation of adenovirus mRNA formation. Advances in Virus Research 31:169–228
    [Google Scholar]
  14. Goldenberg C. J., Rosenthal R., Bhadurt S., Raskas H. J. 1981; Coordinate regulation of two cytoplasmic RNA species transcribed from early region 2 of the adenovirus 2 genome. Journal of Virology 38:932–939
    [Google Scholar]
  15. Groudine M., Peretz M., Weintraub H. 1981; Transcriptional regulation of hemoglobin switching in chick embryos. Molecular and Cellular Biology 1:281–288
    [Google Scholar]
  16. Halbert D. N., Cutt J. R., Shenk T. 1985; Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. Journal of Virology 56:250–257
    [Google Scholar]
  17. Hofer E., Darnell J. E. 1981; The primary transcription unit of the mouse B-major globin gene. Cell 23:585–593
    [Google Scholar]
  18. Horwitz M. S. 1990; Adenoviridae and their replication. In Virology, 2nd edn. pp 1679–1721 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  19. Huang M.-M, Hearing P. 1989; Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. Journal of Virology 63:2605–2615
    [Google Scholar]
  20. Lawrence J. B., Singer R. H., Marselle L. M. 1989; Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502
    [Google Scholar]
  21. Leppard K. N., Shenk T. 1989; The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO Journal 8:2329–2336
    [Google Scholar]
  22. Lewis J. B., Mathews M. B. 1980; Control of adenovirus early gene expression: a class of immediate early gene products. Cell 21:303–313
    [Google Scholar]
  23. Mariman EC. M, van Eekelen CA. G, Reinders R. J., Berns AJ. M, van Venrooij W. J. 1982; Adenoviral heterogeneous nuclear RNA is associated with the host nuclear matrix during splicing. Journal of Molecular Biology 154:103–119
    [Google Scholar]
  24. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. 1984; Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12:7035–7056
    [Google Scholar]
  25. Moore M., Schaack J., Baim S. B., Morimoto R. I., Zinn K., Shenk T. 1987; Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Molecular and Cellular Biology 7:4505–4512
    [Google Scholar]
  26. Ornelles D. A., Shenk T. 1991; Localization of the adenovirus early region IB 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. Journal of Virology 7:4505–4512
    [Google Scholar]
  27. Pilder S., Moore M., Logan J., Shenk T. 1986; The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Molecular and Cellular Biology 6:470–476
    [Google Scholar]
  28. Sandler A. B., Ketner G. 1989; Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. Journal of Virology 63:624–630
    [Google Scholar]
  29. Sarnow P., Hearing P., Anderson C. W., Halbert D. N., Shenk T., Levine A. J. 1984; Adenovirus early region IB 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. Journal of Virology 49:692–700
    [Google Scholar]
  30. Smiley J. K., Young M. A., Flint S. J. 1990; Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein. Journal of Virology 64:4558–4564
    [Google Scholar]
  31. Williams J., Karger B. D., Ho Y. S., Castiglia C. L., Mann T., Flint S. J. 1986; The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-575
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-575
Loading

Data & Media loading...

Most cited Most Cited RSS feed