1887

Abstract

Although it is known that rubella-immune individuals have T cells that proliferate in response to rubella virus (RV), the determinants that evoke this response have not been identified. This study utilized recombinant proteins that express overlapping sequences of the RV structural open reading frame to identify domains of the structural proteins that contain cell-mediated immunodominant sequences. Lysates enriched with RV fusion proteins (RecA-RV-LacZ) were prepared from transformed with plasmids which contained specific RV cDNA inserts. Approximately 62% of RV-immune individuals gave RV-specific responses to one or more of the RV fusion proteins. Over 10% of immune individuals recognized the capsid sequence C-C. Lymphoproliferation data from studies using six overlapping synthetic peptides representing this sequence suggested that as much as 70% of the immune population may recognize this domain. An E1 sequence, E1-E1, was recognized by 15% of the RV-immune individuals with the fusion proteins. Five synthetic peptides representing this sequence had an overall response rate of 50%. The sequence C-C failed to evoke any RV-specific responses with the fusion proteins and synthetic peptides representing this sequence were used to verify that the RV fusion proteins and the criteria used to identify RV-specific responses were adequate. These peptides gave a response rate of only 6%. In general, significant responses to specific fusion proteins correlated with high responses (stimulation index ≥ 4.0) to representative synthetic peptides. This study suggests that the recombinant proteins were beneficial in identifying cell-mediated immunodominant domains of the RV structural proteins which could be further characterized with synthetic peptides.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-3-445
1993-03-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/3/JV0740030445.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-3-445&mimeType=html&fmt=ahah

References

  1. Buimovici-Klein E., Cooper L. Z. 1985; Cell-mediated immune responses to rubella infections. Reviews of Infectious Diseases 7:S123–S128
    [Google Scholar]
  2. Buimovici-Klein E., Vesikari R., Santangelo C. F., Cooper L. Z. 1976; Study of the lymphocyte in vitro response to rubella antigen and phytohemagglutinin by a whole blood method. Archives of Virology 52:323–331
    [Google Scholar]
  3. Buimovici-Klein E., Lang P. B., Ziring P. R., Cooper L. Z. 1979; Impaired cell mediated immune responses in patients with congenital rubella. Correlation with gestational age at time of exposure. Pediatrics 64:620–626
    [Google Scholar]
  4. Chantler J. K., Ford D. K., Tingle A. J. 1982; Persistent rubella infection and rubella-associated arthritis. Lancet i:1323–1325
    [Google Scholar]
  5. Chantler J. K., Tingle A. J., Petty R. E. 1985; Persistent rubella virus infection associated with chronic arthritis in children. New England Journal of Medicine 313:1117–1123
    [Google Scholar]
  6. Cooper L. Z., Krugman S. 1966; Diagnosis and management: congenital rubella. Pediatrics 37:335–338
    [Google Scholar]
  7. Cooper L. Z., Ziring P. R., Ockerse A. B., Fedun B. A., Kiely B., Krugman S. 1969; Rubella: clinical manifestations and management. American Journal of Diseases of Children 118:18–29
    [Google Scholar]
  8. Ford D. K., Reid G. D., Tingle A. J., Mitchell L. A., Schulzer M. 1992; Sequential follow up observations of a patient with rubella associated persistent arthritis. Annals of the Rheumatic Diseases 51:407–410
    [Google Scholar]
  9. Frey T. K., Marr L. D. 1988; Sequence of the region coding for virion proteins C and E2 and the carboxy terminus of the nonstructural proteins of rubella virus: comparison with alpha-viruses. Gene 62:85–99
    [Google Scholar]
  10. Frey T. K., Marr L. D., Hemphill M. L., Dominguez G. 1986; Molecular cloning and sequencing of the region of the rubella virus genome coding for glycoprotein El. Virology 154:228–232
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  12. Lamb J. R., Ivanyi J., Rees A. D. M., Rothbard J. B., Howland K., Young R. A., Young D. B. 1987; Mapping of T cell epitopes using recombinant antigens and synthetic peptides. EMBO Journal 6:1245–1249
    [Google Scholar]
  13. Leibowitz J. L., Perlman S., Weinstock G., DeVries J. R., Budzilowicz C., Weissemann J. M., Weiss S. R. 1988; Detection of a murine corona virus nonstructural protein encoded in a downstream open reading frame. Virology 164:156–164
    [Google Scholar]
  14. Lovett A., McCarthy M., Frey T., Rice C., Wolinsky J. S. 1992; Rubella-specific cytotoxic T cell responses. FASEB Journal 6:A1334
    [Google Scholar]
  15. Merrifield R. B., Vizioli L. D., Boman H. G. 1982; Synthesis of the antibacterial peptide cecopin A(l-33). Biochemistry 21:5020–5031
    [Google Scholar]
  16. Moore W. T., Wolinsky J. S., Suter M. J.-F., Farmer T. B., Caprioli R. M. 1992 Immunoreactive synthetic peptide epitope mapping with structural validation using electrospray mass spectrometry. In Techniques in Protein Chemistry III pp. 183–197 Edited by Angeletti R. H. San Diego: Academic Press;
    [Google Scholar]
  17. Nath A., Slagle B., Wolinsky J. S. 1989; Anti-idiotypic antibodies to rubella virus. Archives of Virology 107:159–167
    [Google Scholar]
  18. Norris J. M., Dorman J. S., Revero M., Porte R. E. 1987; The epidemiology and genetics of insulin-dependent diabetes mellitus. Archives of Pathology and Laboratory Medicine 111:905–909
    [Google Scholar]
  19. Olson G. B., Dent P. B., Rawls W. E., South M. A., Montgomery J. R., Melnick J. L., Good R. A. 1968; Abnormalities of in vitro lymphocyte responses during rubella virus infection. Journal of Experimental Medicine 128:47–68
    [Google Scholar]
  20. Ou D., Chong P., Tripet B., Gillam S. 1992; Analysis of T- and B-cell epitopes of capsid protein of rubella virus by using synthetic peptides. Journal of Virology 66:1674–1681
    [Google Scholar]
  21. Rothbard J. B., Taylor W. R. 1988; A sequence pattern common to T cell epitopes. EMBO Journal 7:93–100
    [Google Scholar]
  22. Rothman A. L., Kurane I., Zhang Y.-M, ., Lai C.-J, . & Ennis F. A. 1989; Dengue virus-specific murine T-lymphocyte proliferation: serotype specificity and response to recombinant viral proteins. Journal of Virology 63:2486–2491
    [Google Scholar]
  23. Shaver K. A., Boughman J. A., Nance W. E. 1985; Congenital rubella syndrome and diabetes : a review of epidemiologic, genetic, and immunologic factors. American Annals of the Deaf 130:526–532
    [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A. 76:4350–4354
    [Google Scholar]
  25. Townsend A. R. M., Gotch F. M., Davey J. 1985; Cytotoxic T cells recognize fragments of influenza nucleoprotein. Cell 42:457–167
    [Google Scholar]
  26. Townsend A. R. M., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. 1986; The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968
    [Google Scholar]
  27. Weinstock G. M. 1984 Vectors for expressing open reading frame DNA in Escherichia cotí using LacZ gene fusion. In Genetic Engineering: Principles and Methods pp. 3148 Edited by Setlow J. K., Hollaender A. New York: Plenum Press;
    [Google Scholar]
  28. Wolinsky J. S. 1990 Rubella. In Virology, 2nd edn. pp. 815–838 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  29. Wolinsky J. S., McCarthy M., Allen-Cannady O., Moore W., Jin R., Cao S.-N., Lovett A., Simmons D. 1991; A monoclonal antibody defined epitope map of expressed rubella virus protein domains. Journal of Virology 65:3986–3994
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-3-445
Loading
/content/journal/jgv/10.1099/0022-1317-74-3-445
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error