Epstein–Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells Free

Abstract

Epstein–Barr virus (EBV) nuclear antigen (EBNA) 6 (also known as 3c) is a latent nuclear protein with an of about 160K which is invariably expressed in EBV-immortalized B cells. It includes a putative basic leucine zipper domain; as such it is a good candidate for a regulator of viral gene expression. More than 75% of the EBNA 6 coding sequence is deleted from viral genomes carried in the Burkitt's lymphoma (BL) tumour-derived cell line, Raji. Thus although Raji cells express normal levels of the remaining five EBNAs and low levels of latent membrane protein (LMP), EBNA 6 protein is completely absent. In this study we have established Raji clones stably expressing EBNA 6 after cotransfection of an EBNA 6 gene under the control of the simian virus 40 early promoter with a selectable marker. Analysis of these clones has revealed that EBNA 6 induces a significant increase in the expression of LMP. In addition the cells have undergone a number of morphological and phenotypic changes consistent with blast-activation of normal B lymphocytes. The Raji cells expressing EBNA 6 show ruffling of the cell membrane and the development of a polarity defined by multiple villous (‘spiky’) projections at one end of the cell. This morphological change is associated with a dramatic increase in the expression of the cytoskeletal protein, vimentin. The EBV-associated B cell activation marker CD23 (blast 2) is induced to high levels although other activation markers such as CD30 and CD39 are unaffected. All these changes appear to be independent of the precise levels of EBNA 6 protein expressed. EBNA 2 has been shown previously to trans-activate the LMP gene and in the control Raji cells, EBNA 6-positive Raji cells and in B lymphoblastoid cells similar levels of EBNA 2 are expressed. Our findings are therefore most consistent with a model in which EBNA 6 either augments or complements the action of EBNA 2 in the induction of LMP and the cascade of gene expression which leads to B cell activation and immortalization by EBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-3-361
1993-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/3/JV0740030361.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-3-361&mimeType=html&fmt=ahah

References

  1. Abbott S. D., Rowe M., Cadwallader K., Rickinson A., Gordon J., Wang F., Rymo L., Rickinson A. B. 1990; Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. Journal of Virology 64:2126–2134
    [Google Scholar]
  2. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608
    [Google Scholar]
  3. Allday M. J., Crawford D. H., Griffin B. E. 1988; Prediction and demonstration of a novel Epstein-Barr virus nuclear antigen. Nucleic Acids Research 16:4353–4367
    [Google Scholar]
  4. Allday M. J., Crawford D. H., Griffin B. E. 1989; Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. Journal of General Virology 70:1755–1764
    [Google Scholar]
  5. Birkenbach M., Leibowitz D., Wang F., Sample J., Kieff E. 1989; Epstein-Barr virus latent infection membrane protein increases vimentin expression in human B cell lines. Journal of Virology 63:4079–1084
    [Google Scholar]
  6. Epstein M. A., Achong B. G. (editors) 1986 The Epstein-Barr Virus: Recent Advances London: William Heinemann;
    [Google Scholar]
  7. Fahraeus R., Jansson A., Ricksten A., Sjoblom A., Rymo L. 1990; Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences, U.S.A. 87:7390–7394
    [Google Scholar]
  8. Gritz L., Davies J. 1983; Plasmid encoded hygromycin-b resistance: the sequence of hygromycin-beta-phosphotransferase gene and its expression in E. coli and S. cerevisaie. Gene 25:179–185
    [Google Scholar]
  9. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalising functions of Epstein-Barr virus in B lymphocytes. Nature, London 340:393–397
    [Google Scholar]
  10. Hammerschmidt W., Sugden B., Baichwal V. R. 1989; The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. Journal of Virology 63:2469–2475
    [Google Scholar]
  11. Hatfull G., Bankier A. T., Barrell B. G., Farrell P. J. 1988; Sequence analysis of Raji Epstein-Barr virus DNA. Virology 164:334–340
    [Google Scholar]
  12. Hotchin N. A., Allday M. J., Crawford D. H. 1989; Deregulated c-myc expression in Epstein-Barr virus immortalised B cells induces altered growth properties and surface phenotype but not tumorigenicity. International Journal of Cancer 45:566–571
    [Google Scholar]
  13. Kallin B., Dillner J., Ernberg I., Ehlin-Henriksson B., Rosen A., Henle W., Henle G., Klein G. 1986; Four virally determined nuclear antigens are expressed in Epstein-Barr virus-transformed cells. Proceedings of the National Academy of Sciences, U.S.A. 83:1499–1503
    [Google Scholar]
  14. Kieff E., Liebowitz D. 1990 Epstein-Barr virus and its replication. In Virology, 2nd edn. pp. 1889–1920 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  15. Menezes J., Liebold W., Klein G., Clements G. 1975; Establishment and characterisation of an Epstein-Barr virus (EBV)-negative lymphoblastoid B cell line from an exceptional, EBV-genome negative African Burkitt’s lymphoma. BioMedicine 22:276–284
    [Google Scholar]
  16. Miller G. 1990 Epstein-Barr virus, biology, pathogenesis and medical aspects. In Virology, 2nd edn. pp. 1921–1958 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  17. Moss D. J., Sculley T. B., Pope J. H. 1986; Induction of Epstein-Barr virus nuclear antigens. Journal of Virology 58:988–990
    [Google Scholar]
  18. Nilsson K., Klein G. 1982; Phenotypic and cytogenetic characteristics of human B lymphoid cell lines and their relevance to the etiology of Burkitt lymphoma. Advances in Cancer Research 37:319–380
    [Google Scholar]
  19. O’Shea E. K., Klemm J. D., Kim P. S., Albers T. 1991; X-ray structure of the GCN4 leucine zipper and two-stranded, parallel coiled coil. Science 254:539–544
    [Google Scholar]
  20. Petti L., Sample J., Wang F., Kieff E. 1988; A fifth Epstein-Barr virus nuclear protein (EBNA 3c) is expressed in latently infected growth-transformed lymphocytes. Journal of Virology 62:1330–1338
    [Google Scholar]
  21. Pope J. H., Horne M. K., Scott W. 1968; Transformation of foetal human leukocytes in vitro by filtrates of a leukaemic cell line containing herpes-like virus. International Journal of Cancer 3:857–866
    [Google Scholar]
  22. Pulvertaft R. J. V. 1965; A study of malignant tumours in Nigeria by short term tissue culture. Journal of Clinical Pathology 18:261–273
    [Google Scholar]
  23. Ricksten A., Kallin B., Alexander H., Dillner J., Fahraeus R., Klein G., Lerner R., Rymo L. 1988; Bam HI E region of the Epstein-Barr virus genome encodes three transformation-associated nuclear proteins. Proceedings of the National Academy of Scicences, U.S.A. 85:995–999
    [Google Scholar]
  24. Rooney C., Howe J. G., Speck S. H., Miller G. 1989; Influence of Burkitt’s lymphoma and primary B cells on latent gene expression by the non immortalizing P3J-HRI strain of Epstein-Barr virus. Journal of Virology 63:1531–1539
    [Google Scholar]
  25. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  26. Skare J., Farley J., Strominger J. L., Fresen K. O., Cho M. S., zuR Hausen H. 1985; Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H. Journal of Virology 55:286–297
    [Google Scholar]
  27. Smith M. E. F., Thomas J. A. 1990; Cellular expression of lymphocyte function associated antigens and the intercellular adhesion molecule-1 in the normal tissue. Journal of Clinical Pathology 43:893–990
    [Google Scholar]
  28. Sung N. S., Kenney S., Gutsch D., Pagano J. S. 1991; EBNA 2 transactivated a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. Journal of Virology 65:2164–2169
    [Google Scholar]
  29. Thomas J. A., Allday M. J., Crawford D. H. 1991; Epstein-Barr virus-associated lymphoproliférative disorders in immunocompromised individuals. Advances in Cancer Research 57:329–380
    [Google Scholar]
  30. Vinson C. R., Sigler P. B., McKnight S. L. 1989; Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911–916
    [Google Scholar]
  31. Walls E. V., Doyle M. G., Patel K. K., Allday M. J., Catovsky D., Crawford D. H. 1989; Activation and immortalisation of leukaemia B cells by Epstein-Barr virus. International Journal of Cancer 44:846–853
    [Google Scholar]
  32. Wang D., Liebowitz D., Wang F., Gregory C., Rickinson A., Larson R., Springer T., Kieff E. 1988; Epstein-Barr virus latent infection membrane protein (LMP) alters lymphocyte morphology, adhesion and growth: deletion of the amino terminus abolishes activity. Journal of Virology 62:4173–4183
    [Google Scholar]
  33. Wang D., Kikutani H., Tsang S. F., Kishimoto T., Kieff E. 1991; Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. Journal of Virology 65:4101–1106
    [Google Scholar]
  34. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein-Barr virus nuclear antigen 2 specifically induces expression the B cell activation antigen CD23. Proceedings of the National Academy of Sciences, U.S.A. 84:3452–3456
    [Google Scholar]
  35. Wang F., Gregory C., Sample C., Rowe M., Liebowitz R., Murray R., Rickinson A., Kieff E. 1990a; Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3c are effectors of phenotypic changes in B lymphocytes : EBNA2 and LMP1 co-operatively induce CD23. Journal of Virology 64:2309–2318
    [Google Scholar]
  36. Wang F., Tsang S. F., Kurillan M. G., Cohen J. I., Kieff E. 1990b; Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP 1. Journal of Virology 64:3407–3416
    [Google Scholar]
  37. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1991; Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during the initial stages of infection. Proceedings of the National Academy of Sciences, U.S.A. 86:3942–3946
    [Google Scholar]
  38. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, London 313:812–815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-3-361
Loading
/content/journal/jgv/10.1099/0022-1317-74-3-361
Loading

Data & Media loading...

Most cited Most Cited RSS feed