1887

Abstract

The sequence of the 3′-terminal 1768 nucleotides of the PS and ŏo6 isolates of plum pox virus (PPV) has been determined and compared with that of the equivalent regions of other PPV isolates sequenced previously. The sequenced region is part of the PPV open reading frame encoding the last 186 amino acids of the NIb protein and the coat protein (CP, 330 amino acids), followed by a non-coding region of 220 nucleotides and a poly(A) tail. PPV-PS and PPV-ŏo6, just like PPV-El Amar, show rather high levels of nucleotide diversity in the sequence encoding the C-terminal region of the NIb protein (19.4 to 31%) and the N terminus of CP (22.8 to 41.1%) when compared with PPV-Rankovic, PPV-D and PPV-NAT, whereas the level of diversity in the rest of the CP sequence and the 3′ non-coding region is low (8 to 10.8% and 5.5 to 7.7%, respectively). However, the first 429 sequenced nucleotides of PPV-ŏo6 are very similar to those of the PPV-Rankovic, PPV-D and PPV-NAT isolates, whereas the rest of the sequence clearly resembles PPV-PS. Thus, PPV-ŏo6 seems to be the result of a natural recombination event between two wild strains of PPV. To our knowledge this is the first evidence of homologous RNA recombination (a process which could play an important role in the evolution of RNA viruses) within the potyvirus group.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-3-329
1993-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/3/JV0740030329.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-3-329&mimeType=html&fmt=ahah

References

  1. Atreya P. L., Atreya C. D., Pirone T. P. 1991; Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceedings of the National Academy of Sciences, U.S.A. 88:7887–7891
    [Google Scholar]
  2. Bouzoubaa S., Niesbach-Klōsgen U., Jupin I., Guilley H., Richards K., Jonard G. 1991; Shortened forms of beet necrotic yellow vein virus RNA-3 and -4 : internal deletions and a subgenomic RNA. Journal of General Virology 72:259–266
    [Google Scholar]
  3. Bujarski J. J., Kaesberg P. 1986; Genetic recombination between RNA components of a multipartite plant virus. Nature, London 321:528–531
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  5. Edwards M. C., Petty I. T. D., Jackson A. O. 1992; RNA recombination in the genome of barley stripe mosaic virus. Virology 189:389–392
    [Google Scholar]
  6. Frenkel M. J., Ward C. W., Shukla D. D. 1989; The use of 3′ non-coding nucleotide sequence in the taxonomy of potyviruses: application to watermelon mosaic virus 2 and soybean mosaic virus-N. Journal of General Virology 70:2775–2783
    [Google Scholar]
  7. Frenkel M. J., Jilka J. M., McKern N. M., Strike P. M., Clark J. M. Jr, Shukla D. D., Ward C. W. 1991; Unexpected sequence diversity in the amino-terminal ends of the coat proteins of strains of sugarcane mosaic virus. Journal of General Virology 72:237–242
    [Google Scholar]
  8. García J. A., Riechmann J. L., Laín S. 1989; Proteolytic activity of the plum pox potyvirus NIa-like protein in Escherichia coli. Virology 170:362–369
    [Google Scholar]
  9. Hillman B. I., Carrington J. C., Morris T. J. 1987; A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51:427–433
    [Google Scholar]
  10. Hirst G. K. 1962; Genetic recombination with Newcastle disease virus, polioviruses and influenza virus. Cold Spring Harbor Symposia on Quantitative Biology 27:303–309
    [Google Scholar]
  11. Kashiwazaki S., Minobe Y., Omura T., Hibino H. 1990; Nucleotide sequence of barley yellow mosaic virus RNA1 : a close evolutionary relationship with potyviruses. Journal of General Virology 71:2781–2790
    [Google Scholar]
  12. Kashiwazaki S., Minobe Y., Hibino H. 1991; Nucleotide sequence of barley yellow mosaic virus RNA2. Journal of General Virology 72:995–999
    [Google Scholar]
  13. King A. M. Q. 1988 Genetic recombination in positive strand RNA viruses. In RNA Genetics pp. 149–165 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton: CRC Press;
    [Google Scholar]
  14. King A. M. Q., McCahon D., Slade W. R., Newman J. W. I. 1982; Recombination in RNA. Cell 29:921–928
    [Google Scholar]
  15. Kirkegaard K., Baltimore D. 1986; The mechanism of RNA recombination in poliovirus. Cell 47:433–443
    [Google Scholar]
  16. Koonin E. V., Choi G. H., Nuss D. L., Shapira R., Carrington J. C. 1991; Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proceedings of the National Academy of Sciences, U.S.A. 88:10647–10651
    [Google Scholar]
  17. Lai M. M. C. 1992; RNA recombination in animal and plant viruses. Microbiological Reviews 56:61–79
    [Google Scholar]
  18. Lai M. M. C., Baric R. S., Makino S., Reck J. G., Egbert J., Leibowitz J. L., Stohlman S. A. 1985; Recombination between nonsegmented RNA genomes of murine coronaviruses. Journal of Virology 56:449–456
    [Google Scholar]
  19. Laín S., Riechmann J. L., Méndez E., García J. A. 1988; Nucleotide sequence of the 3′-terminal region of plum pox potyvirus RNA. Virus Research 10:325–342
    [Google Scholar]
  20. Laín S., Riechmann J. L., García J. A. 1989a; The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research 13:157–172
    [Google Scholar]
  21. Laín S., Riechmann J. L., Martín M. T., García J. A. 1989b; Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene 82:357–362
    [Google Scholar]
  22. Lapeyre B., Amalric F. 1985; A powerful method for the preparation of cDNA libraries: isolation of cDNA encoding a 100-KDa nucleolar protein. Gene 37:215–220
    [Google Scholar]
  23. Li X. H., Heaton L. A., Morris T. J., Simon A. E. 1989; Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proceedings of the National Academy of Sciences, U.S.A. 86:9173–9177
    [Google Scholar]
  24. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70:513–524
    [Google Scholar]
  25. Monroe S. S., Schlesinger S. 1983; RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′-ends. Proceedings of the National Academy of Sciences, U.S.A. 80:3279–3283
    [Google Scholar]
  26. Riechmann J. L., Laín S., García J. A. 1990; Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 111:710–716
    [Google Scholar]
  27. Riechmann J. L., Laín S., García J. A. 1992; Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1–16
    [Google Scholar]
  28. Robinson D. J., Hamilton W. D. O., Harrison B. D., Baulcombe D. C. 1987; Two anomalous tobravirus isolates: evidence for RNA recombination in nature. Journal of General Virology 68:2551–2561
    [Google Scholar]
  29. Rott M. E., Tremaine J. H., Rochon D. M. 1991; Comparison of the 5′ and 3′-termini of tomato ringspot virus RNA1 and RNA2: evidence for RNA recombination. Virology 185:468–472
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Shirako Y., Brakke M. K. 1984; Spontaneous deletion mutation of soil-borne wheat mosaic virus RNA II. Journal of General Virology 65:855–858
    [Google Scholar]
  32. Shukla D. D., Ward C. W. 1988; Amino acid sequence homology of coat proteins as a basis for identification and classification of the potyvirus group. Journal of General Virology 69:2703–2710
    [Google Scholar]
  33. Shukla D. D., Ward C. W. 1989; Structure of potyvirus coat proteins and its applications in the taxonomy of the potyvirus group. Advances in Virus Research 36:273–314
    [Google Scholar]
  34. Shukla D. D., Strike P. M., Tracy S. L., Gough K. H., Ward C. W. 1988; The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus contains the major virus-specific epitopes. Journal of General Virology 69:1497–1508
    [Google Scholar]
  35. Shukla D. D., Jilka J., Tosic M., Ford R. E. 1989; A novel approach to the serology of potyviruses involving affinity-purified polyclonal antibodies directed towards virus-specific N termini of coat proteins. Journal of General Virology 70:13–23
    [Google Scholar]
  36. Shukla D. D., Frenkel M. J., Ward C. W. 1991; Structure and function of the potyvirus genome with special reference to the coat protein coding region. Canadian Journal of Plant Pathology 13:178–191
    [Google Scholar]
  37. Teycheney P. Y., Tavert G., Delbos R., Ravelonandro M., Dunez J. 1989; The complete nucleotide sequence of plum pox virus RNA (strain D). Nucleic Acids Research 17:10115–10116
    [Google Scholar]
  38. Van der Kuyl A. C., Neeleman L., Bol J. F. 1991; Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants. Virology 183:731–738
    [Google Scholar]
  39. Ward C. W., Shukla D. D. 1991; Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296
    [Google Scholar]
  40. Wetzel T., Candresse T., Ravelonandro M., Delbos R. P., Mazyad H., Aboul-Ata A. E., Dunez J. 1991; Nucleotide sequence of the 3′-terminal region of the RNA of the El Amar strain of plum pox potyvirus. Journal of General Virology 72:1741–1746
    [Google Scholar]
  41. Zimmern D. 1988 Evolution of RNA viruses. In RNA Genetics pp. 211–240 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-3-329
Loading
/content/journal/jgv/10.1099/0022-1317-74-3-329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error