1887

Abstract

The virulence of avian influenza A viruses depends on the cleavability of the haemagglutinin (HA) by an intracellular protease at multiple basic amino acids. Although previous studies have demonstrated the importance of these amino acids for processing by the cellular protease, with emphasis on conserved residues near the cleavage site, the minimal requirements for cleavage remain unknown. By expressing site-specific mutants of the HA of a virulent avian influenza virus, A/turkey/Ireland/1378/85 (H5N8), in the simian virus 40 system and testing for their cleavability by an endogenous protease in CV-1 cells, and their fusion activity in a polykaryon formation assay, we were able to show that glycine at the amino terminus of HA2 is not essential for cleavage and that maximal cleavage requires at least five basic residues at the cleavage site, when carbohydrate is nearby. Moreover, we confirmed, that a conserved proline upstream of the cleavage site is not essential for HA cleavage or fusion activity, and that lysine replacement of the carboxyl-terminal arginine of HA1 abolishes cleavability. These findings should help identify the proteases responsible for intracellular cleavage of the HA of virulent avian influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-2-311
1993-02-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/2/JV0740020311.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-2-311&mimeType=html&fmt=ahah

References

  1. Barr P. J. 1991; Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66:1–3
    [Google Scholar]
  2. Benjannet S., Rondeau N., Day R., Chretien M., Seidah N. G. 1991; PCI and PC2 are proprotein convertases capable of cleaving pro-opiomelanocortin at distinct pairs of basic residues. Proceedings of the National Academy of Sciences, U.S.A 883564–3568
    [Google Scholar]
  3. Birch N. P., Tracer H.L., Hakes D. J., Loh Y. P. 1991; Coordinate regulation of mRNA levels of pro-opiomelanocortin and the candidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochemical and Biophysical Research Communications 179:1311–1319
    [Google Scholar]
  4. Bosch F-X., Garten W., Klenk H. D., Rott R. 1981; Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HAl and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735
    [Google Scholar]
  5. Bresnahan P. A., Leduc R., Thomas L., Thorner J., Gibson H. N., Brake A. J., Barr P. J., Thomas G. 1990; Human furin gene encodes a yeast kex2-like endoprotease that cleaves pro-β-NGF in vivo. Journal of Cell Biology 111:2851–2859
    [Google Scholar]
  6. Dong J., Dubay J. W., Perez L. G., Hunter E. 1992; Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein define a requirement for dibasic residues for intra-cellular cleavage. Journal of Virology 66:865–874
    [Google Scholar]
  7. Freed E. O., Risser R. 1987; The role of envelope glycoprotein processing in murine leukemia virus infection. Journal of Virology 61:2852–2856
    [Google Scholar]
  8. Fuller R. S., Brake A. J., Thorner J. 1989; Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 246:482–486
    [Google Scholar]
  9. Garten W., Bosch F. X., Linder D., Rott R., Klenk H. D. 1981; Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374
    [Google Scholar]
  10. Gething M. J., Doms R. W., York D., White J. 1986; Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemaggiutinin of influenza virus. Journal of Cell Biology 102:11–23
    [Google Scholar]
  11. Hatsuzawa K., Hosaka M., Nakagawa T., Nagase M., Shoda A., Murakami K., Nakayama K. 1990; Structure and expression of mouse furin, a yeast Kex2-related protease. Lack of processing of coexpressed prorenin in GH4C1 cells. Journal of Biological Chemistry 265:22075–22078
    [Google Scholar]
  12. Hosaka M., Nagahama M., Kim W.-S., Watanabe T., Hatsuzawa K., Ikemizu J., Murakami K., Nakayama K. 1991; Aig-X- Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. Journal of Biological Chemistry 266:12127–12130
    [Google Scholar]
  13. Kawaoka Y., Webster R. G. 1988; Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proceedings of the National Academy of Sciences. U.S.A 85:324–328
    [Google Scholar]
  14. Kawaoka Y., Webster R. G. 1989; Interplay between carbohydrate in the stalk and the length of the connecting peptide determines the cleavability of influenza virus hemagglutinin. Journal of Virology 63:3296–3300
    [Google Scholar]
  15. Kawaoka Y., Nestorowicz A., Alexander D. J., Webster R. G. 1987; Molecular analyses of the hemagglutinin genes of H5 influenza viruses: Origin of a virulent turkey strain. Virology 158:218–227
    [Google Scholar]
  16. Kawaoka Y., Yamnikova S., Chambers T. M., Lvov D. K., Webster R. G. 1990; Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179:759–767
    [Google Scholar]
  17. Korner J., Chun J., O’Bryan L., Axel R. 1991; Prohormone processing in Xenopus oocytes: characterization of cleavage signals and cleavage enzymes. Proceedings of the National Academy of Sciences. U.S.A 88:11393–11397
    [Google Scholar]
  18. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, V:S:A 82:488–492
    [Google Scholar]
  19. Lamb R. A. 1989; Genes and proteins of the influenza viruses. In The Influenza Viruses pp 1–87 Edited by Krug R. M. New York & London: Plenum Press;
    [Google Scholar]
  20. McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. 1988; Endoproteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell 53:55–67
    [Google Scholar]
  21. Misumi Y., Oda K., Fujiwara T., Takami N., Tashiro K., Ikehara Y. 1991; Functional expression of furin demonstrating its intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. Journal of Biochemistry 266:16954–16959
    [Google Scholar]
  22. Nagahama M., Ikemizu J., Misumi Y., Ikehara Y., Murakami K., Nakayama K. 1991; Evidence that differentiates between precursor cleavages at dibasic and Arg-X-Lys/Arg-Arg sites. Journal of Biochemistry 110:806–811
    [Google Scholar]
  23. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. 1991; Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485
    [Google Scholar]
  24. Oda K., Ikeda M., Tsuji E., Sohda M., Takami N., Misumi Y., Ikehara Y. 1991; Sequence requirements for proteolytic cleavage of precursors with paired basic amino acids. Biochemical and Biophysical Research Communications 179:1181–1186
    [Google Scholar]
  25. Ohuchi M., Orlich M., Ohuchi R., Simpson B. E. J., Garten W., Klenk H.-D., Rott R. 1989; Mutations at the cleavage site of the hemagglutinin alter the pathogenicity of influenza virus A/chick/ Penn/83 (H5N2). Virology274–280
    [Google Scholar]
  26. Stieneke-Gröber A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W. 1992; Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11:2407–2414
    [Google Scholar]
  27. Thomas L., Leduc R., Thorne B. A., Smeekens S. P., Steiner D. F., Thomas G. 1991; Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohonnone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proceedings of the National Academy of Sciences, U.S.A 885297–5301
    [Google Scholar]
  28. Vey M., Orlich M., Adler S., Klenk H.-D., Rott R., Garten W. 1992; Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188:408–413
    [Google Scholar]
  29. Walker J. A., Sakaguchi T., Matsuda Y., Yoshida T., Kawaoka Y. 1992; Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 190:278–287
    [Google Scholar]
  30. Waterfield M., Gething M. J., Scrace G., Skehel J. J. 1980; The carbohydrate side chains and disulphide bonds of the haemagglutinin of the influenza virus A/Japan/305/57 (H2N2). In Structure and Variation in Influenza Virus pp 11–20 Edited by Laver W. G., Air G. M. Amsterdam & New York: Eisevier/North-Holland;
    [Google Scholar]
  31. Wiley D. C., Sk£hel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza vims. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-2-311
Loading
/content/journal/jgv/10.1099/0022-1317-74-2-311
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error