1887

Abstract

A cDNA copy of the murine coronavirus [otherwise known as murine hepatitis virus (MHV)] surface (S) glycoprotein gene was isolated and expressed in DBT cells by using a recombinant vaccinia virus system. The expressed S protein induced extensive syncytium formation at neutral pH. Oligonucleotide mutagenesis was used to engineer an S protein gene in which codons for the proteolytic cleavage site, Arg-Arg-Ala-Arg-Arg, were replaced with an equal number of codons for amino acids with aliphatic or aliphatic hydroxyl side-chains. The mutated S protein was stably expressed in DBT cells and, in contrast to the wild-type protein, was not proteolytically cleaved. Nevertheless, the non-cleaved protein induced extensive syncytium formation. These results clearly indicate that the non-cleaved form of the MHV S protein is able to mediate cell membrane fusion. Thus proteolytic cleavage is not an absolute requirement for fusion activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-2-183
1993-02-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/2/JV0740020183.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-2-183&mimeType=html&fmt=ahah

References

  1. Barthold S. W. 1986; Mouse hepatitis virus biology and epizootiology. In Viral and Mycoplasmal Infections of Laboratory Rodents: Effects on Biomedical Research pp 571–601 Edited by Bhatt P., N, Jacoby R. O., Morse A. C. III, New A. E. Orlando: Academic Press;
    [Google Scholar]
  2. Cervin M., Anderson R. 1991; Modulation of coronavirus-mediated cell fusion by homeostatic control of cholesterol and fatty acid metabolism. Journal of Medical Virology 35:142–149
    [Google Scholar]
  3. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119358–371
    [Google Scholar]
  4. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. 1986; Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. Journal of Virology 59:463–471
    [Google Scholar]
  5. Daya M., Wong F., Cervin M., Evans G., Vennema H., Spaan W., Anderson R. 1989; Mutation of host cell determinants which discriminate between lytic and persistent mouse hepatitis virus infection results in a fusion-resistant phenotype. Journal of General Virology 70:3335–3346
    [Google Scholar]
  6. de Groot R. J., Luytjes W., Horzinek M. C., van dhr Zeijst, R A M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike protein of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  7. de Groot R. J., van Leen R. W., Dalderup M. J. M., Vennema H., Horzinek M. C., Spaan W. J. M. 1989; Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 171:493–502
    [Google Scholar]
  8. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. Journal of Virology 64:537–5367
    [Google Scholar]
  9. Dveksler G. S., Pensiero M. N., Cardellichio C. B., Williams R. K., Tiang G.-S., Holmes K. V., Dieffenbach C. W. 1991; Cloning of the mouse hepatitis vims (MHV) receptor: expression in human and hamster cell fines confers susceptibility to MHV. Journal of Virology 65:6881–6891
    [Google Scholar]
  10. Frana M.F., Behnke J. N., Sturman L. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host dependent differences in proteolytic cleavage and cell fusion. Journal of Virology 56:912–920
    [Google Scholar]
  11. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase. Proceedings of the National Academy of Sciences, U.S.A 838122–8126
    [Google Scholar]
  12. Fuerst T. R., Earl P. L., Moss B. 1987; Use of hybrid vaccinia virus-T7 RNA polymerase system for the expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  13. Gallagher T. M., Escarmis C., Buchmeier M. J. 1991; Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein. Journal of Virology 65:1916–1928
    [Google Scholar]
  14. Gong S., Lai C., Esteban M. 1990; Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14kDa virus envelope protein. Virology 178:81–91
    [Google Scholar]
  15. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  16. Kielian M., Helenius A. 1985; pH induced alterations in the fusogenic spike protein of Semliki Forest virus,. Journal of Cell Biology 101:2284–2291
    [Google Scholar]
  17. Koetzner, C A., Parker M. M., Ricard C. S., Sturman L. S., Masters P. S. 1992; Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. Journal of Virology 66:1841–1848
    [Google Scholar]
  18. Körner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S., Wege H. 1991; Nucleocapsid or spike protein-specific CD4+ T lymphocytes protect against coronavirus-induced encephalitis in the absence of CD8+ T cells. Journal of Immunology 147:2317–2323
    [Google Scholar]
  19. Kooi C., Cervin M., Anderson R. 1991; Differentiation of acid-pH-dependent and non-dependent entry pathways for mouse hepatitis virus. Virology 180:108–119
    [Google Scholar]
  20. Kumanishi T. 1967; Brain tumors induced with Rous sarcoma virus, Schmidt-Ruppin strain I. Induction of brain tumors in adult mice with Rous chicken sarcoma cells. Japanese Journal of Experimental Medicine 37:461–474
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  22. Lee H.-J., Shieh C.-K., Gorbalenya A. E., Koonin E. V., LaMonica N., Tuler J., Bagdzhadzhyan, A & Lai M. M. C. 1991; The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582
    [Google Scholar]
  23. Lobigs M., Garoff H. 1990; Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. Journal of Virology 64:1233–1240
    [Google Scholar]
  24. Luytjes W., Sturman, L: S., Bredenbeek P. J., Charik J., van der Zeijst B. A. M-, Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  25. McClure M. O., Marsh M., Weiss R. A. 1988; Human immunodeficiency virus infection of CD4 bearing cells occurs by a pH-independent mechanism. EMBO Journal 7:513–518
    [Google Scholar]
  26. McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Rbyes G., R & Weissman I. L. 1988; Endo-proteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell 53:55–67
    [Google Scholar]
  27. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: A Practical Approach pp 191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  28. Marsh M., Helenius A. 1989; Virus entry into animal cells. Advances in Virus Research 36:107–151
    [Google Scholar]
  29. Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. 1983; Fusion resistance and decreased infectability as major host cell determinants of coronavirus persistence. Virology 128:407–417
    [Google Scholar]
  30. Mobley J., Evans G., Dailey M. O., Perlman S. 1992; Immune response to a murine coronavirus: identification of a homing receptor-negative CD4+ T cell subset that responds to viral glycoproteins. Virology 187:443–452
    [Google Scholar]
  31. Morrison T. G. 1988; Structure, function and intracellular processing of paramyxovirus membrane proteins. Virus Research 10:113–136
    [Google Scholar]
  32. Nakamaye K. L., Eckstein F. 1986; Inhibition of restriction endonuclease Neil cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Research 14:9679–9698
    [Google Scholar]
  33. Pachuk C. J., Bredenbeek P. J., Zoltick P. W., Spaan W. J. M., Weiss S. R. 1989; Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis virus strain A59. Virology 171:141–148
    [Google Scholar]
  34. Paterson R. G., Shaughnessy M. A., Lamb R. A. 1989; Analysis of the relationship between cleavability of a paramyxovirus fusion protein and length of the connecting peptide. Journal of Virology 63:1293–1301
    [Google Scholar]
  35. Payne H. R., Storz J. 1988; Analysis of cell fusion induced by bovine coronavirus infection. Archives of Virology 103:27–33
    [Google Scholar]
  36. Pensiero M. N., Dveksler G. S., Cardellichio C. B., Tiang G. S-, Elia P. E., Dieffenbach C. W., Holmes K. V. 1992; Binding 0f the coronavirus mouse hepatitis virus A59 to its receptor expressed from a recombinant vaccinia virus depends on posttranslational processing of the receptor glycoprotein. Journal of Virology 66:4028–4039
    [Google Scholar]
  37. Roos D. S., Duchala C. S., Sthphensen D. B., Holmes K. V., Choppin P. W. 1990; Control of virus induced cell fusion by host cell lipid composition. Virology 175:345–357
    [Google Scholar]
  38. Routledge E., Stauber R., Pfleiderer M., Siddell S. G. 1991; Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. Journal of Virology 65:254–262
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold spring Harbor Laboratory;
    [Google Scholar]
  40. Samson A. C. R., Willcocks M. M., Routledge E. G., Morgan L. A., Toms G. L. 1986; A neutralizing monoclonal antibody to respiratory syncytial virus which binds to both F1 and F2 components of the fusion protein. Journal of General Virology 67:1479–1483
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 745463–5467
    [Google Scholar]
  42. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  43. Schultze B., Herrler G. 1992; Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. Journal of General Virology 73:901–906
    [Google Scholar]
  44. Schultze B., Gross H.-J., Bossmer R., Herrler G. 1991; The S protein of bovine coronavirus is a hemagglutinin recognizing, 9-O- acylated sialic acid as a receptor determinant. Journal of Virology 65:6232–6237
    [Google Scholar]
  45. Schwarz B. 1991 Charakterisierung der nichtstrukturellen Proteine von Coronavirus MHV-JHM Ph.D. thesis, University of Wilrzburg
    [Google Scholar]
  46. Schwarz B., Routledge E., Siddell S. G. 1990; Murine coronavirus non-structural protein ns2 is not essential for virus replication in transformed cells. Journal of Virology 64:4784–4791
    [Google Scholar]
  47. Siddell S. G. 1982; Coronavirus JHM: tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. Journal of General Virology 62:259–269
    [Google Scholar]
  48. Siddell S. G., Wege H., Barthel A., Ter Meulen V. 1980; Coronavirus JHM: cell-free synthesis of structural protein p60. Journal of Virology 33:10–17
    [Google Scholar]
  49. Skinner M. A., Siddell S. G. 1983; Coronavirus JHM: nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Research 11:5045–5054
    [Google Scholar]
  50. Spaan W. J. M., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  51. Spaan W. J. M., Cavanagh D., Horzinek M. C. 1990; Coronaviruses. In Immunochemistry of Viruses, vol. 2. The Basis for Serodiagnosis and Vaccines pp 359–379 Edited by van Regenmortel M. H. V., Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  52. Steffy K. R., Kraus G., Looney D. J., Wong-Staal F. 1992; Role of the fusogenic peptide sequence in syncytium induction and infectivity of human immunodeficiency virus type 2. Journal of Virology 66:4532–4535
    [Google Scholar]
  53. Steinhauer D. A., Sauter N. K., Skehel J. J., Wiley D. C. 1992; Receptor binding and cell entry by influenza viruses. Seminars in Virology 3:91–100
    [Google Scholar]
  54. Storz J., Rott R., Kaluza G. 1981; Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infection and Immunity 31:1214–1222
    [Google Scholar]
  55. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  56. Sturman L. S., Ricard C. S., Holmes K. V. 1990; Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37°C Correlates with virus aggregation and virus-induced cell fusion. Journal of Virology 64:3042–3050
    [Google Scholar]
  57. Vennema H., Heijnen L., Zijderfeld A., Horzinek M. C., Spaan W. J. M. 1990a; Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. Journal of Virology 64:339–346
    [Google Scholar]
  58. Vennema H., Rottier P. J. M., Heijen L., Godeke G. J., Horzinek M. C., Spaan W. J. M. 1990b; Biosynthesis and function of the coronavirus spike protein. Advances in Experimental Medicine and Biology 276:9–19
    [Google Scholar]
  59. Wege H., Siddell S. G., Ter Meulen V. 1982; The biology and pathogenesis of coronaviruses. Current Topics in Microbiology and Immunology 99:165–200
    [Google Scholar]
  60. Wege H., Dorries R., Wege H. 1984; Hybridoma antibodies to the rmirine noronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
  61. Wege H., Winter J., Meyermann R. 1988; The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence: detection of critical epitopes by variant analysis. Journal of General Virology 69:87–98
    [Google Scholar]
  62. Weiland E., Mussagay M., Weiland F. 1978; Non-producer malignant tumor cells with rescuable sarcoma virus genome isolated from a recurrent Moloney sarcoma. Journal of Experimental Medicine 148:408–423
    [Google Scholar]
  63. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped virus. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  64. White M. A., Panayiotis Z., Crise B., Rose J. K. 1990; A fusion defective mutant of the vesicular stomatitis virus glycoprotein. Journal of Virology 64:4907–4913
    [Google Scholar]
  65. Williams R. K., Tiang G.-S., Holmes K. V. 1991; Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences 885533–5536
    [Google Scholar]
  66. Woods D. 1984; Oligonucleotide screening of cDNA libraries. Focus 6:1–3
    [Google Scholar]
  67. Yoshikura H., Tejima S. 1981; Role of protease in mouse hepatitis virus-induced cell fusion. Virology 113:503–511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-2-183
Loading
/content/journal/jgv/10.1099/0022-1317-74-2-183
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error