Characterization of vaccinia virus gene B12R Free

Abstract

We report the characterization of vaccinia virus gene B12R which is predicted to encode a 33K protein with 36% amino acid identity to the serine/threonine protein kinase encoded by vaccinia virus gene B1R. S1 nuclease protection experiments showed that gene B12R is transcribed early during infection from an initiation site 11 bp upstream of the open reading frame (ORF). The gene encodes a 33K polypeptide that is not required for virus replication in tissue culture nor for virus virulence in a murine intranasal model. Expression of the B12R gene in produced an abundant 33K polypeptide which lacked protein kinase activity under conditions in which the protein kinases encoded by vaccinia virus gene B1R and African swine fever virus gene j9L are active.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-12-2807
1993-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/12/JV0740122807.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-12-2807&mimeType=html&fmt=ahah

References

  1. Almendral J. M., Almazán F., Blasco R., Viñuela E. 1990; Multigene families in African swine fever virus: family 110. Journal of Virology 64:2064–2072
    [Google Scholar]
  2. Banham A. H., Smith G. L. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology 191:803–812
    [Google Scholar]
  3. Banham A. H., Leader D. P., Smith G. L. 1993; Phosphorylation of ribosomal proteins by the vaccinia virus B1R protein kinase. FEBS Letters 321:27–31
    [Google Scholar]
  4. Baylis S. A., Banham A. H., Vydelingum S., Dixon L. K., Smith G. L. 1993; African swine fever virus encodes a serine protein kinase which is packaged into virions. Journal of Virology 67:4549–4556
    [Google Scholar]
  5. Boyle D. B., Coupar B. E. H. 1988; A dominant selectable marker for the construction of recombinant poxviruses. Gene 65:123–128
    [Google Scholar]
  6. Buller R. M. L., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature, London 317:813–815
    [Google Scholar]
  7. Child S. J., Palumbo G. J., Buller R. M. L., Hruby D. E. 1990; Insertional inactivation of the large subunit of ribonucleotide reductase encoded by vaccinia virus is associated with reduced virulence in vivo. Virology 174:625–629
    [Google Scholar]
  8. Duncan S. A., Smith G. L. 1992; Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. Journal of General Virology 73:1235–1242
    [Google Scholar]
  9. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. Journal of Virology 64:3108–3111
    [Google Scholar]
  10. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  12. Howard S. T. 1991 Structural and functional analyses of the Sal I G fragment of vaccinia virus Ph.D. thesis University of Cambridge;
    [Google Scholar]
  13. Howard S. T., Smith G. L. 1989; Two early vaccinia virus genes encode polypeptides related to protein kinases. Journal of General Virology 70:3187–3201
    [Google Scholar]
  14. Hughes S. J., Johnston L. H., De Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. Journal of Biological Chemistry 266:20103–20109
    [Google Scholar]
  15. Isaacs S. N., Kotwal G. J., Moss B. 1990; Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses. Virology 178:626–630
    [Google Scholar]
  16. Kerr S. M., Smith G. L. 1991; Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–632
    [Google Scholar]
  17. Kerr S. M., Johnston L. H., Odell M., Duncan S. A., Law K. M., Smith G. L. 1991; Vaccinia DNA ligase complements S. cerevisiae cdc 9, localizes in cytoplasmic factories, and affects virulence and virus sensitivity to DNA damaging agents. EMBO Journal 10:4343–4350
    [Google Scholar]
  18. Law K. M., Smith G. L. 1992; A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. Journal of General Virology 73:549–557
    [Google Scholar]
  19. Lin S., Chen W., Broyles S. S. 1992; The vaccinia virus B1R gene product is a serine/threonine protein kinase. Journal of Virology 66:2717–2723
    [Google Scholar]
  20. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: A Practical Approach pp 191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  21. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO Journal 11:1973–1980
    [Google Scholar]
  22. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. 1991; Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180:406–410
    [Google Scholar]
  23. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of Sciences, U.S.A 83:7698–7702
    [Google Scholar]
  24. Rempel R. E., Traktman P. 1992; Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. Journal of Virology 66:4413–4426
    [Google Scholar]
  25. Rosenberg A. H., Lade B. N., Chui D. S., Lin S.-W., Dunn J.-J., Studier F. W. 1987; Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56:125–135
    [Google Scholar]
  26. Smith G. L., Chan Y. S., Kerr S. M. 1989a; Transcriptional mapping and nucleotide sequence of a vaccinia virus gene with extensive homology to DNA ligases. Nucleic Acids Research 17:9051–9061
    [Google Scholar]
  27. Smith G. L., Howard S. T., Chan Y. S. 1989b; Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. Journal of General Virology 70:2333–2343
    [Google Scholar]
  28. Smith G. L., Chan Y. S., Howard S. T. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. Journal of General Virology 72:1349–1376
    [Google Scholar]
  29. Tomley F. M., Binns M. M., Campbell J., Boursnell M. E. G. 1988; Sequence analysis of an 11.2 kilobase, near-terminal Bam HI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  30. Traktman P., Anderson M. K., Rempel R. E. 1989; Vaccinia virus encodes an essential gene with strong homology to protein kinases. Journal of Biological Chemistry 264:21458–21461
    [Google Scholar]
  31. Upton C., Delange A. M., McFadden G. 1987; Tumorigenic poxviruses: genomic organisation and DNA sequence of the telomeric region of the Shope fibroma virus genome. Virology 160:20–30
    [Google Scholar]
  32. Weston K., Barrell B. G. 1986; Sequence of the short unique region, short repeats, and part of the long repeats of human cytomegalovirus. Journal of Molecular Biology 192:177–208
    [Google Scholar]
  33. Yuen L., Moss B. 1987; Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of Sciences, U.S.A 84:6417–6421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-12-2807
Loading
/content/journal/jgv/10.1099/0022-1317-74-12-2807
Loading

Data & Media loading...

Most cited Most Cited RSS feed