1887

Abstract

Compared with other T cell lines, C8166 lymphocytes are particularly susceptible to human immunodeficiency virus (HIV) infection and the outcome is invariably cell death. The results reported in this study demonstrate that the virus-induced cytolysis is strongly dependent on the initial cell density of C8166 cultures. Cultures diluted to 50 to 500 cells/ml almost completely maintained their cell duplication rate and released infectious virus into the medium. HIV infection of diluted C8166 cells is a simple and easily reproducible procedure for obtaining persistently infected cultures. These cultures contained genomic and extragenomic HIV DNA, the latter being assayed by PCR for two-long terminal repeat circular forms. The status of persistent infection disappeared within 2 months. The recovery is due to the replacement of CD4 down-regulated infected cells by overgrowing uninfected cell variants, which are transcriptionally inactive for CD4. The mechanisms underlying the emergence of these variants in persistently infected cultures are considered.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-12-2595
1993-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/12/JV0740122595.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-12-2595&mimeType=html&fmt=ahah

References

  1. Anderson S., Bankier A. T., Barrell B. G., De Bruijn M. H. L., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J. H., Staden R., Young I. G. 1981; Sequence and organization of the human mitochondrial genome. nature, london 290:457–165
    [Google Scholar]
  2. Bergeron L., Sodroski J. 1992; Dissociation of unintegrated viral DNA accumulation from single-cell lysis induced by human immunodeficiency virus type 1. Journal of Virology 66:5777–5787
    [Google Scholar]
  3. Besansky N. J., Butera S. T., Sinha S., Folks T. M. 1991; Unintegrated human immunodeficiency virus type 1 DNA in chronically infected cell lines is not correlated with surface CD4 expression. Journal of Virology 65:2695–2698
    [Google Scholar]
  4. Cheng-Mayer C., Weiss C., Seto D., Levy J. A. 1989; Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proceedings of the National Academy of Sciences, U,. S,. A 86:8575–8579
    [Google Scholar]
  5. Chirgwin J. M., Pryzbyla A. E., McDonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  6. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  7. Folks T. M., Powell D., Lightfoote M., Koenig S., Fauci A. S., Benn S., Rabson A., Daugherty D., Gendelman H. E., Hoggan M. D., Venkatesan S., Martin M. A. 1986; Biological and biochemical characterization of a cloned Leu-3 cell surviving infection with the acquired immunodeficiency syndrome retrovirus. Journal of Experimental Medicine 164:280–290
    [Google Scholar]
  8. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  9. Hoxie J. A., Alpers J. D., Rackowski J. L., Huebner K., Hag-garty B. S., Cedarbaum A. J., Reed J. C. 1986; Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234:1123–1127
    [Google Scholar]
  10. Kim S., Ikeuchi K., Groopman J., Batimore D. 1990; Factors affecting cellular tropism of human immunodeficiency virus. Journal of Virology 64:5600–5604
    [Google Scholar]
  11. Maddon P. J., Littman D. R., Godfrey M., Maddon D. E., Chess L., Axel R. 1985; The isolation and nucleotide sequence of a c-DNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42:93–104
    [Google Scholar]
  12. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  13. Marshall W. L., Diamond D. C., Kowalski M. M., Finberg R. W. 1992; High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants. Journal of Virology 66:5492–5499
    [Google Scholar]
  14. Pang S., Konyanagi Y., Miles S., Wiley C., Vinters H. V., Chen I. S. Y. 1990; High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature, London 343:85–89
    [Google Scholar]
  15. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. American Journal of Hygiene 27:493–197
    [Google Scholar]
  16. Rosenberg Z. F., Fauci A. S. 1991; Immunopathogenesis of HIV infection. FASEB Journal 5:2382–2390
    [Google Scholar]
  17. Sakai K., Dewhurst S., Ma X., Volsky D. J. 1988; Differences in cytopathogenicity and host cell range among infectious molecular clones of human immunodeficiency virus type 1 simultaneously isolated from an individual. Journal of Virology 62:4078–4085
    [Google Scholar]
  18. Sakai K., Ma X., Gordienko I., Volsky D. J. 1991; Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate: role of the vif gene in HIV-1 infection kinetics and cytopathicity. Journal of Virology 65:5765–5773
    [Google Scholar]
  19. Salahuddin S. Z., Markham P. D., Wong-Staal F., Franchini G., KalyaNaraman V. S., Gallo R. C. 1983; Restricted expression of human T-cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology 129:51–64
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sanchez-Pescador R., Power M. D., Barr P. J., Steimer K. S., Stempien M. M., Brown-Shimmer S. L., Gee W. W., Renard A., Randolph A., Levy J. A., Dina D., Luciw P. A. 1985; Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 221:484–492
    [Google Scholar]
  22. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverly P. C. L. 1986; Epitopes of the CD4 antigen and HIV infection. Science 234:1120–1123
    [Google Scholar]
  23. Somasundaran M., Robinson H. L. 1988; Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection. Science 242:1554–1557
    [Google Scholar]
  24. Stevenson M., Meier C., Mann A. M., Chapman N., Wasiak A. 1988; Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4 cells: mechanism for persistence in AIDS. Cell 53:483–496
    [Google Scholar]
  25. Szabò B., Locardi C., Lo Presti E., Belardelli F., Benedetto A. 1993; Tumor necrosis factor-alpha increases the sensitivity of human immunodeficiency virus (HlV)-infected monocytic U937 cells to the complement-dependent cytotoxicity of sera from HIV type 1-infected individuals: role of the gpl20 protein. Journal of General Virology 74:1271–1276
    [Google Scholar]
  26. York-Higgins D., Cheng-Mayer C., Bauer D., Levy J. A., Dina D. 1990; Human immunodeficiency virus type 1 cellular host range, replication, and cytopathicity are linked to the envelope region of the viral genome. Journal of Virology 64:4016–4020
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-12-2595
Loading
/content/journal/jgv/10.1099/0022-1317-74-12-2595
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error