1887

Abstract

The envelope glycoprotein B of human cytomegalovirus (CMV) is a major target of the neutralizing antibody response against this virus, and hence has importance as a potential subunit vaccine. PCR was utilized to amplify DNA encoding the dominant antigenic determinant on this molecule, AD-1 (codons 552 to 635), and DNA sequencing was carried out in order to compare nucleotide variation in AD-1 between clinical isolates of CMV and the laboratory strain AD169. Wild-type CMV strains isolated from AIDS patients were not only more likely to possess nucleotide substitutions (19/24 compared to 5/25, < 0·0001) than those from renal transplant recipients, but they also exhibited a greater degree of nucleotide sequence divergence (6·94 versus 0·82 substitutions/1000 bp, < 0·0001; 96·0 to 100% versus 99·4 to 100% similarity). Increased sequence variation in the AIDS patients did not correlate with absolute peripheral blood CD4 T cell level ( = 0·33, > 0·1). Only two strains from AIDS patients and one strain from the renal transplant recipients possessed nucleic acid substitutions that resulted in codon changes, indicating that AD-1 is relatively well conserved amongst clinical isolates of CMV. The demonstration of strains with codon changes within neutralizing epitopes, however, highlights the importance of taking into consideration the presence of these strains within the wildtype virus population when preparing subunit vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-11-2499
1993-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/11/JV0740112499.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-11-2499&mimeType=html&fmt=ahah

References

  1. Aldish J. D., Lahijani R. S., St. Jeor S. C. 1990); Identification of a putative cell receptor for human cytomegalovirus. Virology 176:337–345
    [Google Scholar]
  2. Banks T., Huo B., Kousoulas K., Spaete R., Pachl C., Pereira L. 1989; A major neutralizing domain maps within the carboxyl-terminal half of the cleaved cytomegalovirus B glycoprotein. Journal of General Virology 70:979–985
    [Google Scholar]
  3. Britt W. J. 1984; Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology 135:369–378
    [Google Scholar]
  4. Britt W. J. 1991; Recent advances in the identification of significant human cytomegalovirus-encoded proteins. Transplantation Proceedings 23:64–69
    [Google Scholar]
  5. Britt W. J., Vugler L., Stephens E. B. 1988; Induction of complement-dependent and -independent neutralising antibodies by recombinant-derived human cytomegalovirus gp55-l16 (gB). Journal of Virology 62:3309–3318
    [Google Scholar]
  6. Britt W. J., Vugler L., Butfiloski E. J., Stephens E. B. 1990a; Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralising antibody response. Journal of Virology 64:1079–1085
    [Google Scholar]
  7. Britt W. J., Fay J., Stephens E., Kneiss N., Utz U., Mach M. 1990b; Identification of an immunodominant linear epitope on human cytomegalovirus gp55-116 (gB). In Vaccines 90 pp 457–A60 Edited by Lerner A. R., Ginsberg H., Chanock M., Brown F. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Brytting M., Wahlberg J., Lundeberg J., Wahren B., Uhlen M., Sundqvist V.-A. 1992; Variations in the major immediate-early gene found by direct genomic sequencing. Journal of Clinical Microbiology 30:955–960
    [Google Scholar]
  9. Cai W., Gu B., Person S. 1988; Role of glycoprotein B of herpes simplex type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  10. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  11. Chou S. 1990; Differentiation of cytomegalovirus strains by restriction analysis of DNA sequences amplified from clinical specimens. Journal of Infectious Diseases 162:738–742
    [Google Scholar]
  12. Chou S., Dennison K. M. 1991; Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralisation-related epitopes. Journal of Infectious Diseases 163:1229–1234
    [Google Scholar]
  13. Collier A. C., Chandler S. H., Hunter-Handsfield H., Corey L., McDougall J. K. 1989; Identification of multiple strains of cytomegalovirus in homosexual men. Journal of Infectious Diseases 159:123–126
    [Google Scholar]
  14. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein–Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type-1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  15. Darlington J., Super M., Patel K., Grundy J. E., Griffiths P. D., Emery V. C. 1991; Use of the polymerase chain reaction to analyse sequence variation within a major neutralizing epitope of glycoprotein B (gp58) in clinical isolates of human cytomegalovirus. Journal of General Virology 72:1985–1989
    [Google Scholar]
  16. Drew W. L., Mintz L., Miner R. C., Sands M., Ketterer B. 1981; Prevalence of cytomegalovirus infection in homosexual men. Journal of Infectious Diseases 143:188–192
    [Google Scholar]
  17. Glenn J. 1981; Cytomegalovirus infections following renal transplantation. Reviews of Infectious Diseases 3:1151–1178
    [Google Scholar]
  18. Gonczol E., Hudecz F., Ianacone J., Dietzschold B., Starr S., Plotkin S. A. 1986; Immune responses to isolated human cytomegalovirus envelope glycoproteins. Journal of Virology 58:661–664
    [Google Scholar]
  19. Gonczol E., Ianacone J., Ho W., Starr S., Meignier B., Plotkin S. 1990; Isolated gA/gB glycoprotein complex of human cytomegalovirus envelope induces humoral and cellular immune-responses in human volunteers. Vaccine 8:130–136
    [Google Scholar]
  20. Gonczol E., deTaisne C., Hirka G., Berencsi K., Lin W., Paoletti E., Plotkin S. 1991; High expression of human cytomegalovirus (HCMV)-gB protein in cells infected with a vaccinia-gB recombinant: the importance of the gB protein in HCMV immunity. Vaccine 9:631–637
    [Google Scholar]
  21. Gretch D. R., Gehrz R. C., Stinski M. F. 1988a; Characterization of a human cytomegalovirus glycoprotein complex (gcI). Journal of General Virology 69:1205–1215
    [Google Scholar]
  22. Gretch D. R., Kari B., Rasmussen L., Gehrz R. C., Stinski M. F. 1988b; Identification and characterization of three distinct families of glycoprotein complexes in the envelope of human cytomegalovirus. Journal of Virology 62:875–881
    [Google Scholar]
  23. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  24. Ho W. Z., Harouse J. M., Rando R. F., Gonczol E., Srinivasan A., Plotkin S. A. 1990; Reciprocal enhancement of gene expression and viral replication between human cytomegalovirus and human immunodeficiency virus type 1. Journal of General Virology 71:97–103
    [Google Scholar]
  25. Ishigaki S., Takeda T., Kura N., Ban T., Saitoh S., Sakami N., Watanabe Y., Kohgo Y., Niitsu Y. 1991; Cytomegalovirus DNA in the sera of patients with cytomegalovirus pneumonia. British Journal of Haematology 79:198–204
    [Google Scholar]
  26. Jacobson M. A., Mills J. 1988; Serious cytomegalovirus disease in the aquired immunodeficiency syndrome (AIDS). Annals of Internal Mediucine 108:585–594
    [Google Scholar]
  27. Kari B., Gehrz R. 1992; A human cytomegalovirus complex designated gC-II is a major heparin-binding component of the envelope. Journal of Virology 66:1761–1764
    [Google Scholar]
  28. Kari B., Gehrz R. 1993; Structure, composition and heparin binding properties of a human cytomegalovirus glycoprotein complex designated gC-II. Journal of General Virology 74:255–264
    [Google Scholar]
  29. Kari B., Lussenhop N., Goertz R., Wabuke-Burot M., Radeke M., Gehrz R. 1986; Characterization of monoclonal antibodies reactive to several biochemically distinct human cytomegalovirus glycoprotein complexes. Journal of Virology 60:345–352
    [Google Scholar]
  30. Kneiss N., Mach M., Fay J., Britt W. J. 1991; Distribution of linear antigenic sites on glycoprotein gp55 of human cytomegalovirus. Journal of Virology 65:138–146
    [Google Scholar]
  31. Kropff B., Landini M.-P., Mach M. 1993; An ELISA using recombinant proteins for the detection of neutralizing antibodies against human cytomegalovirus. Journal of Medical Virology 38:187–195
    [Google Scholar]
  32. Lehner R., Stamminger T., Mach M. 1991; Comparative sequence analysis of human cytomegalovirus strains. Journal of Clinical Microbiology 29:2494–2502
    [Google Scholar]
  33. Marshall G. S., Picciardi R. P., Rando R. F., Puck J., Ge R., Plotkin S. A., Gonczol E. 1990; An adenovirus recombinant that expresses the human cytomegalovirus major envelope glycoprotein and induces neutralising antibodies. Journal of Infectious Diseases 162:1177–1181
    [Google Scholar]
  34. Marshall G. S., Rabalais G. P., Stout G. G., Waldeyer S. L. 1992; Antibodies to recombinant-derived glycoprotein B after natural human cytomegalovirus infection correlate with neutralising activity. Journal of Infectious Diseases 165:381–384
    [Google Scholar]
  35. Nowlin D. M., Cooper N. R., Compton T. 1991; Expression of a human cytomegalovirus receptor correlates with infectibility of cells. Journal of Virology 65:3114–3121
    [Google Scholar]
  36. Plotkin S. A., Starr S. E., Friedman H. M., Brayman K., Harris S., Jackson S., Tustin N. B., Grossman R., Dafoe D., Barker C. 1991; Effect of Towne live virus vaccine on cytomegalovirus disease after renal transplantation: a controlled trial. Annals of Internal Medicine 114:525–531
    [Google Scholar]
  37. Qadri I., Navarro D., Paz P., Pereira L. 1992; Assembly of confirmation-dependent neutralizing domains on glycoprotein B of human cytomegalovirus. Journal of General Virology 73:2913–2921
    [Google Scholar]
  38. Rasmussen L. E., Nelson R., Kelsall D. C., Merigan T. C. 1984; Murine monoclonal antibody to a single protein neutralises the infectivity of human cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A 81:876–880
    [Google Scholar]
  39. Rasmussen L., Resta S., Merigan T. 1991; Human cytomegalovirus glycoprotein-receptor interactions. Transplantation Proceedings 23:60–63
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  42. Skolnik P. R., Kosloff B., Hirsch M. S. 1988; Bidirectional interactions between human immunodeficiency virus type 1 and cytomegalovirus. Journal of Infectious Diseases 157:508–514
    [Google Scholar]
  43. Snydman D. R. 1990; Cytomegalovirus immunoglobulins in the prevention and treatment of cytomegalovirus disease. Reviews of Infectious Diseases 12:s839–848
    [Google Scholar]
  44. Snydman D. R., Werner B. G., Heinze-Lacy R. N., Berardi V. P., Tilney N. L., Kirkman R. L., Milford E. L., Cho S. I., Bush H. L., Levey A. S., Strom T. B., Carpenter C. B., Levey R. H., Harmon W. E., Zimmerman C. E., Shapiro M. E., Steinman T., LoGerfo F., Idelson B., Schroter G. P. J., Levin M. J., McIver J., Leszczynski J., Grady G. F. 1987; Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal-transplant recipients. New England Journal of Medicine 317:1049–1054
    [Google Scholar]
  45. Spaete R. R., Thayer R. M., Probert W. S., Masiarz F. R., Chamberlain S. H., Rasmussen L., Merigan T. C., Pachl C. 1988; Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology 167:207–225
    [Google Scholar]
  46. Spector S. A., Hirata K. K., Neuman T. R. 1984; Identification of multiple cytomegalovirus strains in homosexual men with acquired immunodeficiency syndrome. Journal of Infectious Diseases 150:953–956
    [Google Scholar]
  47. Spector S. A., Merril R., Wolf D., Dankner W. M. 1992; Detection of human cytomegalovirus in plasma of AIDS patients during acute visceral disease by DNA amplification. Journal of Clinical Microbiology 30:2359–2365
    [Google Scholar]
  48. Taylor H. P., Cooper N. R. 1990; The human cytomegalovirus receptor on fibroblasts is a 30-kilodalton membrane protein. Journal of Virology 64:2484–2490
    [Google Scholar]
  49. Tugizov S., Paz P., Navarro D., Qadri I., Pereira L. 1992; Constitutive production of human cytomegalovirus glycoprotein B promotes cell fusion that is blocked by neutralizing antibodies. Program and Abstracts of the 17th International Herpesvirus Workshop, Edinburgh abstract 29
    [Google Scholar]
  50. Utz U., Britt W., Vugler L., Mach M. 1989; Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. Journal of Virology 63:1995–2001
    [Google Scholar]
  51. Utz U., Koenig S., Ciligan J. E., Biddison W. E. 1992; Presentation of three different viral peptides HTLV-1 Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. Journal of Immunology 149:214–221
    [Google Scholar]
  52. Wagner B., Kropff B., Kalbacher H., Britt W., Sundqvist V. A., Ostberg L., Mach M. 1992; A continuous sequence of more than 70 amino acids is essential for antibody binding to the dominant antigenic site of glycoprotein gp58 of human cytomegalovirus. Journal of Virology 66:5290–5297
    [Google Scholar]
  53. Weise K., Kaerner H. C., Glorioso J., Schroder C. H. 1987; Replacement of glycoprotein B gene sequences in herpes simplex virus type 1 strain ANG by corresponding sequences of the strain KOS causes changes of plaque morphology and neuropathogenicity. Journal of General Virology 68:1909–1919
    [Google Scholar]
  54. Winship P. R. 1989; An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research 17:1266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-11-2499
Loading
/content/journal/jgv/10.1099/0022-1317-74-11-2499
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error