1887

Abstract

The spike (S) protein of murine coronavirus JHMV, variant cl-2, comprises two polypeptides, N-terminal S1 (with an N-terminal signal peptide) and C-terminal S2 (with a C-terminal transmembrane domain). In order to express these subunits, we constructed three different vaccinia virus transfer vectors (VV-TVs) containing cDNAs encoding the S1 protein without a transmembrane domain (pSFS1utt), the S1 protein with a C-terminal transmembrane domain derived from S2 (pSFS1tmd) or the S2 protein with an N-terminal signal peptide derived from S1 (pSFssS2). The S1 and S2 proteins were expressed in DBT cells by infection with vaccinia virus and transfection of these VV-TVs. In cells transfected with the pSFS1utt and pSFS1tmd, 96K and 106K proteins, respectively, were detected by Western blotting. The ssS2 protein expressed by pSFssS2 was 96K, which was slightly larger than the authentic S2 protein. The S1utt and S1tmd proteins were shown by binding studies using a panel of monoclonal antibodies to be antigenically indistinguishable from the authentic S1 protein. The S1tmd and ssS2 proteins were detected on the cell surface by immunofluorescence, whereas the S1utt protein was not. However, when the S1utt protein was expressed together with the ssS2 protein, the S1utt was detected on the cell membrane. This suggested that the S1utt was associated with ssS2 on the cell membrane. These observations indicate that the expressed S1 and S2 proteins associated in a similar manner to the authentic S1 and S2 proteins produced in DBT cells infected with cl-2. However, cell fusion was not observed in cells expressing either S1 or S2 nor in cells coexpressing both S1 and S2, although the whole S protein expressed by VV-TV did induce fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-11-2373
1993-11-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/11/JV0740112373.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-11-2373&mimeType=html&fmt=ahah

References

  1. Cohen G. H., Isola V. J., Kuhus J., Berman P. W., Eisenberg R. J. 1986; Localization of discontinuous epitopes of herpes simplex virus glycoprotein D: use of a nondenaturing (“native” gel) system of polyacrylamide gel electrophoresis coupled with Western blotting. Journal of Virology 60:157–166
    [Google Scholar]
  2. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119:358–371
    [Google Scholar]
  3. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. 1986; Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. Journal of Virology 59:463–171
    [Google Scholar]
  4. De Groot, Luytjes W., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  5. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. Journal of Virology 64:5367–5375
    [Google Scholar]
  6. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. 1986; Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, U,. S,. A 84:7413–7417
    [Google Scholar]
  7. Fleming J. O., Stohlman S. A., Harmon R. C., Lai M. M. C., Frelinger J. A., Weiner L. P. 1983; Antigenic relationships of murine coronaviruses: analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology 131:296–307
    [Google Scholar]
  8. Frana M. F., Behnke J. N., Sturman L. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. Journal of Virology 56:912–920
    [Google Scholar]
  9. Funahashi S., Itamura S., Iinuma S., Nerome H., Sugimoto M., Shida H. 1991; Increased expression in vitro and in vivo of foreign genes directed by A-type inclusion body hybrid promoters in recombinant vaccinia viruses. Journal of Virology 65:5584–5588
    [Google Scholar]
  10. Gallagher T. M., Escarmis C., Buchmeier M. J. 1991; Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein. Journal of Virology 65:1916–1928
    [Google Scholar]
  11. Holmes K. V., Doller E. W., Behnke J. N. 1981; Analysis of the function of coronavirus glycoprotein by different inhibition of synthesis with tunicamycin. Advances in Experimental Medicine and Biology 142:133–142
    [Google Scholar]
  12. Hsu M. C., Scheid A., Choppin P. W. 1979; Reconstitution of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology 95:476–491
    [Google Scholar]
  13. Kubo H., Takase-Yoden S., Taguchi F. 1993; Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neurovirulent murine coronavirus JHMV cl-2 variant. Journal of General Virology 74:1421–1425
    [Google Scholar]
  14. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  15. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H. D. 1982; Posttranslational glycosylation of coronavirus glycoprotein El: inhibition with monensin. EMBO Journal 1:1499–1504
    [Google Scholar]
  16. Routledge E., Stauber R., Pfleiderer M., Siddell S. G. 1991; Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. Journal of Virology 65:254–262
    [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U. S. A. 74:5463–5467
    [Google Scholar]
  18. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  19. Siddell S., Wege H., Ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  20. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  21. Spaan W., Cavanagh D., Horzinek M. C. 1990; Coronaviruses. In Immunochemistry of Viruses II, The basis for Serodiagnosis and Vaccines pp 359–379 Edited by Van Regenmortel M. H. V., & Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  22. Stauber R., Pfleiderer M., Siddell S. 1993; Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity. Journal of General Virology 74:183–191
    [Google Scholar]
  23. Sturman L. S., Holmes K. V. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–112
    [Google Scholar]
  24. Sturman L. S., Holmes K. V. 1985; The novel glycoproteins of coronaviruses. Trends in Biochemical Sciences 10:17–20
    [Google Scholar]
  25. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  26. Taguchi F. 1993; Fusion formation by the uncleaved spike protein of murine coronavirus JHMV variant cl-2. Journal of Virology 67:1195–1202
    [Google Scholar]
  27. Taguchi F., Siddell S. G., Wege H., ter Meulen V. 1985; Characterization of a variant virus selected in rat brain after infection by coronavirus mouse hepatitis virus JHM. Journal of Virology 54:429–135
    [Google Scholar]
  28. Taguchi F., Ikeda T., Shida H. 1992; Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2. Journal of General Virology 73:1065–1072
    [Google Scholar]
  29. ter Meulen V., Massa P. T., Dorries R. 1989; Coronaviruses. In Handbook of Clinical Neurology: Viral Disease revised series, vol 12 pp 439–451 Edited by Vinken P. J., Bruyn G. W., Klawans H. L. New York: Elsevier;
    [Google Scholar]
  30. Tyrrell D. A. J., Almeida J. D., Berry D. M., Cunningham C. H., Hamre D., Hofstad M. S., Malluci L., Macintosh K. 1968; Coronaviruses. Nature, London 220:650
    [Google Scholar]
  31. Von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 133:17–21
    [Google Scholar]
  32. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  33. Wege H., Siddell S., ter Meulen V. 1982; The biology and pathogenesis of coronaviruses. Current Topics in Microbiology and Immunology 99:165–200
    [Google Scholar]
  34. Wege H., Dorries R., Wege H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
  35. Weismiller D. G., Sturman L. S., Buchmeier M. J., Fleming J. O., Holmes K. V. 1990; Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. Journal of Virology 64:3051–3055
    [Google Scholar]
  36. White J. M. 1990; Viral and cellular membrane fusion proteins. Annual Renew of Physiology 52:675–697
    [Google Scholar]
  37. Williams R. K., Jiang G. S., Holmes K. V. 1991; Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences, U,. S,. A 88:5533–5536
    [Google Scholar]
  38. Yoden S., Kikuchi T., Siddell S., Taguchi F. 1989; Expression of the peplomer glycoprotein of murine coronavirus JHM using a baculovirus vector. Virology 173:615–623
    [Google Scholar]
  39. Yoo D., Parker M. D., Babiuk L. A. 1990; Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells. Virology 179:121–128
    [Google Scholar]
  40. Yoo D., Parker M. D., Babiuk L. A. 1991; The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology 180395–399
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-11-2373
Loading
/content/journal/jgv/10.1099/0022-1317-74-11-2373
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error