1887

Abstract

By immunoprecipitating protein products from virus-infected baby rat kidney (BRK) cells with specific antibodies, we found that the smaller, 243 residue (243R) E1A protein of human adenovirus 5 (Ad5) activated expression of the virus genes for E1B 55K, E2A 72K, E3 19K, hexon, fibre and penton base and the cellular gene for PCNA. The 243R protein also activated the E2A 72K gene in several rodent cell lines. In transient expression assays, this protein trans-activated the E2 early and major late promoters, suggesting that its effect was at least partially transcriptional. Similar assays with mutants of the E2 early promoter suggested that the ATF- and distal E2F-binding sites were required for this activation. Using mutant viruses with deletions in E1A, we found evidence for three separate pathways by which the 243R protein activated gene expression: one depended on sequences in exon 1 required for this protein to bind to p300, a second depended on sequences in exon 1 required for the protein to bind to pRb and the third appeared to be independent of exon 1 altogether and to depend on exon 2. The relative importance of these pathways for activation varied with the gene and cell. We conclude that a major role of E1A in the transformation of BRK cells by Ad5 is to activate specific genes by at least the first two pathways.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2131
1993-10-01
2022-01-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102131.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2131&mimeType=html&fmt=ahah

References

  1. Bagchi S., Raychaudhuri P., Nevins J. R. 1990; Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans activation. Cell 62:659–669
    [Google Scholar]
  2. Bandara L. R., La Thangue N. B. 1991; Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature, London 351:494–497
    [Google Scholar]
  3. Campos-Gonzalez R., Glenny J. R. 1991; Temperature-dependent tyrosine phosphorylation of microtubule-associated protein kinase in epidermal growth factor-stimulated human fibroblasts. Cell Regulation 2:663–673
    [Google Scholar]
  4. Cao L., Faha B., Dembski M., Tsai L.-H., Harlow E., Dyson N. 1992; Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature, London 355:176–179
    [Google Scholar]
  5. Chellappan S. P., Hiebert S., Mudryj M., Horowitz J. M., Nevins J. R. 1991; The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061
    [Google Scholar]
  6. Dery C. V., Herrmann C. H., Mathews M. B. 1987; Response of individual adenovirus promoters to the products of the E1A gene. Oncogene 2:15–23
    [Google Scholar]
  7. Egan C., Jelsma T. N., Howe J. A., Bayley S. T., Ferguson B., Branton P. E. 1988; Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Molecular and Cellular Biology 8:3955–3959
    [Google Scholar]
  8. Graham F. L. 1984; Transformation by and oncogenicity of human adenoviruses. In The Adenoviruses pp 339–398 Edited by Ginsberg H. S. New York: Plenum Press;
    [Google Scholar]
  9. Haley K. P., Overhauser J., Babiss L. E., Ginsberg H. S., Jones N. C. 1984; Transformation properties of type 5 adenovirus mutants that differentially express the E1A gene products. Proceedings of the National Academy of Sciences, U,. S,. A 81:5734–5738
    [Google Scholar]
  10. Harlow E., Whyte P., Franza B. R., Schley C. 1986; Association of adenovirus early-region 1A proteins with cellular polypeptides. Molecular and Cellular Biology 6:1579–1589
    [Google Scholar]
  11. Heasley L. E., Benedict S., Gleavy J., Johnson G. L. 1991; Requirement of the adenovirus E1A transformation domain 1 for inhibition of PC12 cell neuronal differentiation. Cell Regulation 2:479–489
    [Google Scholar]
  12. Hiebert S. W., Blake M., Azizkhan J., Nevins J. R. 1991; Role of E2F transcription factor in E1A-mediated trans activation of cellular genes. Journal of Virology 65:3547–3552
    [Google Scholar]
  13. Howe J. A., Bayley S. T. 1992; Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 186:15–24
    [Google Scholar]
  14. Howe J. A., Mymryk J. S., Egan C., Branton P. E., Bayley S. T. 1990; Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proceedings of the National Academy of Sciences, U,. S,. A 87:5883–5887
    [Google Scholar]
  15. Jelsma T. N., Howe J. A., Evelegh C. M., Cunniff N. F., Skiado-poulos M. H., Floroff M. R., Denman J. E., Bayley S. T. 1988; Use of deletion and point mutants spanning the coding region of the adenovirus 5 E1A gene to define a domain that is essential for transcriptional activation. Virology 163:494–502
    [Google Scholar]
  16. Jelsma T. N., Howe J. A., Mymryk J. S., Evelegh C.M, Cunniff N. F. A., Bayley S. T. 1989; Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 171:120–130
    [Google Scholar]
  17. Jones N., Shenk T. 1979; Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689
    [Google Scholar]
  18. Kuppuswamy M. N., Chinnadurai G. 1987; Relationship between the transforming and transcriptional regulatory functions of adenovirus 2 E1a oncogene. Virology 159:31–38
    [Google Scholar]
  19. Leff T., Elkaim R., Goding C. R., Jalinot P., Sassone-Corsi P., Perricaudet M., Kedinger C., Chambon P. 1984; Individual products of the adenovirus 12S and 13S EIa mRNAs stimulate viral EIIa and EIII expression at the transcriptional level. Proceedings of the National Academy of Sciences, U,. S,. A 81:4381–4385
    [Google Scholar]
  20. Lillie J. W., Green M., Green M. R. 1986; An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043–1051
    [Google Scholar]
  21. Lillie J. W., Loewenstein P. M., Green M. R., Green M. 1987; Functional domains of adenovirus type 5 E1a proteins. Cell 50:1091–1100
    [Google Scholar]
  22. Miyamoto N. G., Moncollin V., Egly J. M., Chambon P. 1985; Specific interaction between a transcription factor and the upstream element of adenovirus-2 major late promoter. EMBO Journal 4:3563–3570
    [Google Scholar]
  23. Moran B., Zerler B. 1988; Interactions between cell growthregulating domains in the products of the adenovirus E1A oncogene. Molecular and Cellular Biology 8:1756–1764
    [Google Scholar]
  24. Moran E., Zerler B., Harrison T. M., Mathews M. B. 1986; Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Molecular and Cellular Biology 6:3470–3480
    [Google Scholar]
  25. Morgan W. D., Williams G. T., Morimoto R. I., Greene J., Kingston R. E., Tjian R. 1987; Two transcriptional activators, CCAAT–box-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter. Molecular and Cellular Biology 7:1129–1138
    [Google Scholar]
  26. Morris G. F., Mathews M. B. 1990; Analysis of the proliferating cell nuclear antigen promoter and its response to adenovirus early region 1. Journal of Biological Chemistry 265:16116–16125
    [Google Scholar]
  27. Mudryj M., Hiebert S. W., Nevins J. R. 1990; A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. EMBO Journal 9:2179–2184
    [Google Scholar]
  28. Murthy S. C. S., Bhat G. P., Thimmappaya B. 1985; Adenovirus EIIA early promoter: transcriptional control elements and induction by the viral pre-early EIA gene, which appears to be sequence independent. Proceedings of the National Academy of Sciences, U,. S,. A. 82:2230–2234
    [Google Scholar]
  29. Mymryk J. S., Lee R. W. H., Bayley S. T. 1992; Ability of adenovirus 5 E1A proteins to suppress differentiation of BC3H1 myoblasts correlates with their binding to a 300 kDa cellular protein. Molecular Biology of the Cell 3:1107–1115
    [Google Scholar]
  30. Nevins J. R. 1989; Mechanisms of viral-mediated trans-activation of transcription. Advances in Virus Research 37:35–83
    [Google Scholar]
  31. Nevins J. R. 1992; E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429
    [Google Scholar]
  32. Raychaudhuri P., Bagchi S., Devoto S. H., Kraus V. B., Moran E., Nevins J. R. 1991; Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes and Development 5:1200–1211
    [Google Scholar]
  33. Rikitake Y., Moran E. 1992; DNA-binding properties of the E1A-associated 300-kilodalton protein. Molecular and Cellular Biology 12:2862–2836
    [Google Scholar]
  34. Ruley H. E. 1983; Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, London 304:602–606
    [Google Scholar]
  35. Schneider J. F., Fisher F., Goding C. R., Jones N. C. 1987; Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. EMBO Journal 6:2053–2060
    [Google Scholar]
  36. Shenk T., Flint J. 1991; Transcriptional and transforming activities of the adenovirus E1A proteins. Advances in Cancer Research 57:47–85
    [Google Scholar]
  37. Shirodkar S., Ewen M., DeCaprio J. A., Morgan J., Livingston D. M., Chittenden T. 1992; The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68:157–166
    [Google Scholar]
  38. Simon M. C., Kitchener K., Kao H. -T., Hickey E., Weber L., Voellmy R., Heintz N., Nevins J. R. 1987; Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product. Molecular and Cellular Biology 7:2884–2890
    [Google Scholar]
  39. SivaRaman L., Thimmappaya B. 1987; Two promoter-specific host factors interact with adjacent sequences in an E1A-inducible adenovirus promoter. Proceedings of the National Academy of Sciences, U,. S,. A 84:6112–6116
    [Google Scholar]
  40. Stein R. W., Corrigan M., Yaciuk P., Whelan J., Moran E. 1990; Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. Journal of Virology 64:4421–1427
    [Google Scholar]
  41. Subramanian T., Kuppuswamy M., Nasr R. J., Chinnadurai G. 1988; An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor. Oncogene 2:105–112
    [Google Scholar]
  42. Velcich A., Ziff E. 1988; Adenovirus E1a ras cooperation activity is separate from its positive and negative transcription regulatory functions. Molecular and Cellular Biology 8:2177–2183
    [Google Scholar]
  43. Wang H. -G. H., Draetta G., Moran E. 1991; E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Molecular and Cellular Biology 11:4253–4265
    [Google Scholar]
  44. Weeks D. L., Jones N. C. 1983; E1A control of gene expression is mediated by sequences 5′ to the transcription start of the early viral genes. Molecular and Cellular Biology 3:1222–1234
    [Google Scholar]
  45. Whyte P., Ruley H. E., Harlow E. 1988; Two regions of the adenovirus early region 1A proteins are required for transformation. Journal of Virology 62:257–265
    [Google Scholar]
  46. Whyte P., Williamson N. M., Harlow E. 1989; Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75
    [Google Scholar]
  47. Yee A. S., Raychaudhuri P., Jakoi L., Nevins J. R. 1989; The adenovirus-inducible factor E2F stimulates transcription after specific DNA binding. Molecular and Cellular Biology 9:578–585
    [Google Scholar]
  48. Yee S. Y., Branton P. E. 1985; Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147:142–153
    [Google Scholar]
  49. Zammanian M., La Thangue N. B. 1992; Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. EMBO Journal 11:2603–2610
    [Google Scholar]
  50. Zerler B., Moran B., Maruyama K., Moomaw J., Grodzicker T., Ruley H. E. 1986; Adenovirus coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Molecular and Cellular Biology 6:887–899
    [Google Scholar]
  51. Zerler B., Roberts R. J., Mathews M. B., Moran E. 1987; Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Molecular and Cellular Biology 7:821–829
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2131
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2131
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error