1887

Abstract

We investigated endoproteolytic processing of the human immunodeficiency virus (HIV) envelope glycoprotein precursor, gp160, as well as envelope-mediated membrane fusion in the presence of CD4 molecules that were either partially or fully retained in the endoplasmic reticulum (ER). Pulse-chase analyses revealed that gp160 formed complexes with CD4 molecules, and gp160 in the complex was endoproteolytically cleaved to gp120 and gp41 in the secretory pathway. The gp120/gp41 complex thus generated was properly targeted to the plasma membrane in cells expressing gp160 and wild-type CD4 or mutant CD4 molecules that were partially retained in the ER. Additionally, membrane fusion (syncytium) assays were performed to monitor the presence or absence of gp120/gp41 complexes at the cell surface of cotransfected cells and demonstrated that the HIV-1 envelope glycoprotein-mediated membrane fusion was appreciably reduced in the presence of wild-type CD4 or either one of the mutant CD4 molecules. Reduction in the formation of syncytia appears to be due predominantly to saturation of the CD4 binding site on the gp120/gp41 complex at the cell surface of cotransfected cells, but partial retention of the complex in the ER could also partly account for the reduction. However, the intracellular gp120/gp41 complex generated in cells expressing gp160 and CD4 mutant having the transmembrane ER retention signal (TC) was completely retained in the ER and hence could not participate in membrane fusion events at the plasma membrane. Taken together, these data suggest that the endoproteolytic cleavage of gp160 occurs in the ER or cis-Golgi network, and ER retention strategies can potentially be used in preventing the spread of HIV-1 infection in permissive cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2085
1993-10-01
2022-10-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102085.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2085&mimeType=html&fmt=ahah

References

  1. Barr P. J. 1991; Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66:1–3
    [Google Scholar]
  2. Bedinger P., Moriarty A., von Borstel R. C., Donovan N. J., Steimer K. S., Littman D. R. 1988; Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature, London 334:162–165
    [Google Scholar]
  3. Bour S., Bourlerice F., Wainberg M. A. 1991; Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. Journal of Virology 65:6387–6396
    [Google Scholar]
  4. Buonocore L., Rose J. K. 1990; Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature, London 345:625–628
    [Google Scholar]
  5. Buonocore L., Rose J. K. 1993; Blockade of human immunodeficiency virus type 1 production in CD4+ T cells by an intracellular CD4 expressed under control of the viral long terminal repeat. Proceedings of the National Academy of Sciences, U,. S,. A 90:2695–2699
    [Google Scholar]
  6. Butera S. T., Perez V. L., Bei-Yu W., Nabel G. J., Folks T. M. 1991; Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection. Journal of Virology 65:4645–4653
    [Google Scholar]
  7. Capon D. J., Ward R. H. R. 1991; The CD4–gp120 interaction and AIDS pathogenesis. Annual Review of Immunology 9:649–678
    [Google Scholar]
  8. Crise B., Buonocore L., Rose J. K. 1990; CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus envelope glycoprotein precursor. Journal of Virology 64:5585–5593
    [Google Scholar]
  9. Cullen B. R. 1992; Mechanism of actions of regulatory proteins encoded by complex retroviruses. Microbiological Reviews 56:375–394
    [Google Scholar]
  10. Dalgleish A. G., Beverley P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, London 312:763–768
    [Google Scholar]
  11. Dewar R. L., Vasudevachari M. B., Natarajan V., Salzman N. P. 1989; Biosynthesis and processing of human immunodeficiency virus type 1 envelope glycoproteins: effects of monensin on glycosylation and transport. Journal of Virology 63:2452–2456
    [Google Scholar]
  12. Dunphy W. G., Rothman J. E. 1983; Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. Journal of Cell Biology 97:270–275
    [Google Scholar]
  13. Earl P. L., Doms R. w., Moss B. 1990; Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences, U,. S,. A 87:648–652
    [Google Scholar]
  14. Earl P. L., Moss B., Doms R. W. 1991; Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. Journal of Virology 65:2047–2055
    [Google Scholar]
  15. Eiden L. E., Lifson J. D. 1992; HIV interactions with CD4: a continuum of conformations and consequences. Immunology Today 13:201–206
    [Google Scholar]
  16. Freed E. O., Myers D. J., Risser R. 1990; Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proceedings of the National Academy of Sciences, U,. S,. A 87:4650–4654
    [Google Scholar]
  17. Fuerst T. R., Earl P. L., Moss B. 1987; Use of a hybrid virus-T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  18. Garcia J. V., Miller A. D. 1991; Serine phosphorylation-independent down-regulation of cell-surface CD4 by nef . Nature, London 350:508–511
    [Google Scholar]
  19. Garcia J. V., Alfano J., Miller A. D. 1993; The negative effect of human immunodeficiency virus type 1 nef on cell surface CD4 expression is not species specific and requires the cytoplasmic domain of CD4. Journal of Virology 67:1511–1516
    [Google Scholar]
  20. Geyer H., Holschbach C., Hunsmann G., Schneider J. 1988; Carbohydrates of human immunodeficiency virus: structure of oligosaccharide linked to the envelope glycoprotein gp120. Journal of Biological Chemistry 263:11760–11767
    [Google Scholar]
  21. Gleichenhause N., Shastri N., Littman D. R., Turner J. M. 1991; Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64:511–520
    [Google Scholar]
  22. Guo H.-G., Veronese F. D., Tschachler E., Pal R., Kalyanara-man V. S., Gallo R. C. Jr, Reitz M. S. 1990; Characterization of an HIV-1 point mutant blocked in envelope glycoprotein cleavage. Virology 174:217–224
    [Google Scholar]
  23. Haseltine W. A. 1991; Molecular biology of the human immunodeficiency virus type 1. FASEB Journal 5:2349–2360
    [Google Scholar]
  24. Hoxie J. A., Alpers J. D., Rackowski J. L., Huebner K., Hag-garty B. S., Cedarbaum A. J., Reed J. C. 1986; Alteration in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234:1123–1127
    [Google Scholar]
  25. Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. 1991; Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74
    [Google Scholar]
  26. Jabbar M. A., Nayak D. P. 1987; Signal processing, glycosylation, and secretion of mutant hemagglutinins of a human influenza virus by Saccharomyces cerevisiae . Molecular and Cellular Biology 7:1476–1485
    [Google Scholar]
  27. Jabbar M. A., Nayak D. P. 1990; Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. Journal of Virology 64:6297–6304
    [Google Scholar]
  28. Jackson M. R., Nilsson T., Peterson P. A. 1990; Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO Journal 9:3153–3162
    [Google Scholar]
  29. Jackson M. R., Nilsson T., Peterson P. A. 1993; Retrieval of transmembrane proteins to the endoplasmic reticulum. Journal of Cell Biology 121:317–333
    [Google Scholar]
  30. Kawamura I., Koga Y., Oh-Hori N., Onodera K., Kimura G., Nomoto K. 1989; Depletion of the surface CD4 molecules by the envelope protein of human immunodeficiency virus expressed in a human CD4+ monocytoid cell line. Journal of Virology 63:3748–3754
    [Google Scholar]
  31. Klatzmann D., Champagne E., Chamaret S., Gruest J., Gue-tard D., Hercend T., Gluckman J. T., Montagnier L. 1984; T-lymphocyte T4 molecule behaves as receptor for retrovirus LAV. Nature, London 312:767–768
    [Google Scholar]
  32. Kornfeld R., Kornfeld S. 1985; Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry 54:631–664
    [Google Scholar]
  33. Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W. C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. 1987; Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355
    [Google Scholar]
  34. Kundu A., Jabbar M. A., Nayak D. P. 1991; Cell surface transport, oligomerization, and endocytosis of chimeric type II glycoproteins: role of cytoplasmic and anchor domains. Molecular and Cellular Biology 11:2675–2685
    [Google Scholar]
  35. Lee B. A., Donoghue D. 1992; Intracellular retention of membrane-anchored v-sis protein abrogates autocrine signal transduction. Journal of Cell Biology 118:1057–1070
    [Google Scholar]
  36. Levy J. A. 1993; Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57:183–289
    [Google Scholar]
  37. Lifson J. D., Engleman E. G. 1989; Role of CD4 in normal immunity and HIV infection. Immunological Reviews 109:93–117
    [Google Scholar]
  38. Lifson J. D., Reyes G. R., McGrath M. S., Stein B. S., Engleman E. G. 1986; AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127
    [Google Scholar]
  39. McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. 1988; Endo-proteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53:55–67
    [Google Scholar]
  40. McDougal J. C., Kennedy M. S., Sligh J. M., Cort S. P., Mawle A., Nicholson J. K. A. 1986; Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231:382–385
    [Google Scholar]
  41. Maddon P. J., Littman D. R., Godfrey D. E., Maddon D. E., Chess L., Axel R. 1985; The isolation and nucleotide sequence of cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42:93–104
    [Google Scholar]
  42. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor molecule and is expressed in immune system and the brain. Cell 47:333–348
    [Google Scholar]
  43. Maddon P. J., McDougal J. S., Clapham P. R., Dalgleish A. G., Jamal S., Weiss R. A., Axel R. 1988; HIV infection does not require endocytosis of its receptor, CD4. Cell 54:865–874
    [Google Scholar]
  44. Munro S., Pelham H. R. B. 1987; A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907
    [Google Scholar]
  45. Nilsson T., Jackson M., Peterson P. 1989; Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58:707–718
    [Google Scholar]
  46. Page K. A., Stearns S. M., Littman D. R. 1992; Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. Journal of Virology 66:524–533
    [Google Scholar]
  47. Pelham H. R. B. 1989; Control of protein exit from the endoplasmic reticulum. Annual Review of Cell Biology 5:1–23
    [Google Scholar]
  48. Rosenberg Z. F., Fauci A. S. 1991; Immunopathogenesis of HIV infection. FASEB Journal 5:2382–2390
    [Google Scholar]
  49. Rothman J. E., Orci L. 1992; Molecular dissection of the secretory pathway. Nature, London 355:409–415
    [Google Scholar]
  50. Shaw A. S., Chalupny J., Whitney J. A., Hammond C., Amrein K. E., Kavathas P., Sefton B. M., Rose J. K. 1990; Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Molecular and Cellular Biology 10:1853–1862
    [Google Scholar]
  51. Shin J., Doyle C., Yang Z., Kappes D., Strominger J. L. 1990; Structural features of the cytoplasmic region of CD4 required for internalization. EMBO Journal 9:425–134
    [Google Scholar]
  52. Shin J., Dunbrack R. L., Lee S., Strominger J. L. 1991a; Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proceedings of the National Academy of Sciences, U,. S,. A 88:1918–1922
    [Google Scholar]
  53. Shin J., Dunbrack R. L., Lee S., Strominger J. L. 1991b; Phosphorylation-dependent down-modulation of CD4 requires a specific structure within the cytoplasmic domain of CD4. Journal of Biological Chemistry 266:10658–10665
    [Google Scholar]
  54. Sodroski J., Goh W. C., Rosen C., Campbell K., Haseltine W. A. 1986; Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature, London 322:470–474
    [Google Scholar]
  55. Stein B. S., Engleman E. G. 1990; Intracellular processing of the gp160 HIV-1 envelope precursor: endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. Journal of Biological Chemistry 265:2640–2649
    [Google Scholar]
  56. Stevenson M., Meier C., Mann A. M., Chapman N., Wasiak A. 1988; Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 53:483–196
    [Google Scholar]
  57. Stevenson M., Bukrinsky M., Haggerty S. 1992; HIV-1 replication and potential targets for intervention. AIDS Research and Human Retroviruses 8:107–117
    [Google Scholar]
  58. Turner J. M., Brodsky M. H., Irving B. A., Levin S. D., Perl-mutter R. M., Littman D. R. 1990; Interaction of the unique N-terminal region of tyrosine kinase p561ck cytoplasmic domains of CD4 and C48 is mediated by cysteine motifs. Cell 60:755–765
    [Google Scholar]
  59. Vincent M. J., Raja N. U., Jabbar M. A. 1993; The HIV vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. Journal of Virology 67:5538–5549
    [Google Scholar]
  60. Willey R. L., Bonifacino J. S., Potts B. J., Martin M. A., Klausner R. D. 1988; Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proceedings of the National Academy of Sciences, U,. S,. A 85:9580–9584
    [Google Scholar]
  61. Willey R. L., Maldarelli F., Martin M. A., Strebel K. 1992a; Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. Journal of Virology 66:226–234
    [Google Scholar]
  62. Willey R. L., Maldarelli F., Martin M. A., Strebel K. 1992b; Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. Journal of Virology 66:7193–7200
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2085
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2085
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error