Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection Free

Abstract

Infection with the mouse hepatitis coronavirus (MHV) provides an excellent model for the study of viral diseases of the central nervous system and the gastrointestinal tract. With the ultimate aim of studying mucosal immunity to MHV we have cloned the genes encoding the structural proteins of MHV strain A59 (MHV-A59) into the E3 region of a human adenovirus type 5 vector. Infection of HeLa cells with the resulting recombinant adenoviruses AdMHVS, AdMHVN and AdMHVM revealed the correct expression of the spike (S), nucleocapsid (N) and membrane (M) proteins, respectively. Intraperitoneal inoculation of BALB/c mice with the recombinant viruses elicited serum antibodies which specifically recognized the respective MHV proteins in an immunoprecipitation assay. Only antibodies to the S protein neutralized MHV-A59 but titres were low. When analysed by ELISA or by immunofluorescence only the antibody response to the N protein was significant; weak responses or no detectable response at all were found for S and M, respectively. Upon intracerebral challenge with a lethal dose of MHV-A59 we found that a significant fraction of animals vaccinated with adenovirus vectors expressing either the S protein or N protein were protected. This protective effect was significantly stronger when the animals were given a booster immunization with the same vector prior to challenge. No protection was induced by AdMHVM. Interestingly, enhanced protection resulted when AdMHVS and AdMHVN were applied in combination as compared to survival after single immunizations. The results indicate that both the N and S proteins generate a protective immune response and suggest that this response is enhanced by combined expression of the two proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2061
1993-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102061.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2061&mimeType=html&fmt=ahah

References

  1. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction method for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  2. Both G. W., Lockett L. J., Janardhana V., Edwards S. J., Bellamy A. R., Graham F. L., Prevec L., Andrew M. E. 1993; Protective immunity to rotavirus-induced diarrhoea is passively transferred to new-born mice from naive dams vaccinated with a single dose of recombinant adenovirus VP7scl. Virology 193:940–950
    [Google Scholar]
  3. Bredenbeek P. 1990 Nucleic acid domains and proteins involved in the replication of coronaviruses Ph. D. thesis University of Utrecht:
    [Google Scholar]
  4. Buchmeier M. J., Lewicki H. A., Talbot P. J., Knobler R. L. 1984; Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology 132:261–270
    [Google Scholar]
  5. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell–cell fusion. Virology 119:358–371
    [Google Scholar]
  6. Daniel C., Talbot P. J. 1990; Protection from lethal coronavirus infection by affinity-purified spike glycoprotein of murine hepatitis virus, strain A59. Virology 174:87–94
    [Google Scholar]
  7. Ebata S. N., Prevec L., Graham F. L., Dimock K. 1992; Function and immunogenicity of human parainfluenza virus-3 glycoproteins expressed by recombinant adenoviruses. Virus Research 24:21–33
    [Google Scholar]
  8. Fleming J. O., Shubin R. A., Sussman M. A., Casteel N., Stohlman S. A. 1989; Monoclonal antibodies to the matrix (El) glycoprotein of mouse hepatitis virus protect mice from encephalitis. Virology 168:162–167
    [Google Scholar]
  9. Gilmore W., Fleming J. O., Stohlman S. A., Weiner L. P. 1987; Characterization of the structural proteins of the murine coronavirus strain A59 using monoclonal antibodies. Proceedings of the Society for Experimental Biology and Medicine 185:177–186
    [Google Scholar]
  10. Ginsberg H. S., Moldawer L. L., Sehgal P. B., Redington M., Kilian P. L., Chanock R. M., Prince G. A. 1991; A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proceedings of National Academy of Sciences, U,. S,. A 88:1651–1655
    [Google Scholar]
  11. Graham F. L. 1990; Adenoviruses as expression vectors and recombinant vaccines. Trends in Biotechnology 8:85–87
    [Google Scholar]
  12. Graham F. L., Prevec L. 1991; Manipulation of adenovirus vectors. In Methods in Molecular BiologyGene Transfer and Expression Techniques vol 7 pp 109–128 Edited by Murray E. J., Walker J. M. Clifton, New Jersey: Humana Press;
    [Google Scholar]
  13. Graham F. L., Van der Eb A. J. 1973; A new technique for the assay of infectivity of adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  14. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–72
    [Google Scholar]
  15. Hanke T., Graham F. L., Rosenthal K. L., Johnson D. C. 1991; Identification of an immunodominant cytotoxic T-lym-phocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. Journal of Virology 65:1177–1186
    [Google Scholar]
  16. Hasony H. J., MacNaughton M. R. 1981; Antigenicity of mouse hepatitis virus strain 3 subcomponents in C57 strain mice. Archives of Virology 69:33–41
    [Google Scholar]
  17. Johnson D. C., Ghosh-Choudhury G., Smiley J. R., Fallis N., Graham F. L. 1988; Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 164:1–14
    [Google Scholar]
  18. Korner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S., Wege H. 1991; Nucleocapsid or spike protein–specific CD4+ T lymphocytes protect against coronavirus–induced encephalomyelitis in the absence of CD8+ T cells. Journal of Neuroimmunology 147:2317–2323
    [Google Scholar]
  19. Krijnse Locker J., Rose J. K., Horzinek M. C., Rottier P. J. M. 1992; Membrane assembly of the triple-spanning coronavirus M protein: individual transmembrane domains show preferred orientation. Journal of Biological Chemistry 267:21911–21918
    [Google Scholar]
  20. Koolen M. J. M., Borst M. A. J., Horzinek M. C., Spaan W. J. M. 1990; Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. Journal of Virology 64:6270–45273
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 221:680–685
    [Google Scholar]
  22. Lecomte J., Cainelli-Gebera V., Mercier G., Mansour S., Talbot P. J., Lussier G., Oth D. 1987; Protection from mouse hepatitis virus type 3-induced acute disease by an ant-nucleoprotein monoclonal antibody. Archives of Virology 97:123–130
    [Google Scholar]
  23. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  24. McDermott M. R., Graham F. L., Hanke T., Johnson D. C. 1989; Protection of mice against lethal challenge with herpes simplex virus by vaccination with an adenovirus vector expressing HSV glycoprotein B. Virology 169:244–247
    [Google Scholar]
  25. Nakanaga K., Yamanouchi K., Fujiwara K. 1986; Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. Journal of Virology 59:168–171
    [Google Scholar]
  26. Natuk R. J., Chanda P. K., Lubeck M. D., Davis A. R., Wilhelm J., Hjorth R., Wade M. S., Bhat B. M., Mizutani S., Lee S., Eichberg J., Gallo R. C., Hung P. P., Robert-Guroff M. 1992; Adenovirus-human immunodeficiency virus (HIV) envelope recombinant vaccines elicit high-titered HIV-neutralizing antibodies in the dog model. Proceedings of the National Academy of Sciences, U,. S,. A 89:7777–7781
    [Google Scholar]
  27. Peters R. L., Collins M. J., O’Beirne A. J., Howton P. A., Hourihan S. L., Thomas S. F. 1979; Enzyme-linked immunosorbent assay for detection of antibodies to murine hepatitis virus. Journal of Clinical Microbiology 10:595–597
    [Google Scholar]
  28. Prevec L., Schneider M., Rosenthal K. L., Belbeck L. W., Derbyshire J. B., Graham F. L. 1989; Use of human adenovirus-based vectors for antigen expression in animals. Journal of General Virology 70:429–434
    [Google Scholar]
  29. Prevec L., Campbell J. B., Christie B. S., Belbeck L., Graham F. L. 1990; A recombinant human adenovirus vaccine against rabies. Journal of Infectious Diseases 161:27–30
    [Google Scholar]
  30. Rottier P. J. M., Spaan W. J. M., Horzinek M. C., van der Zeijst B. A. M. 1981; Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. Journal of Virology 38:20–26
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Southern P. J., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular and Applied Genetics 1:327–334
    [Google Scholar]
  33. Spaan W. J. M., Rottier P. J. M., Horzinek M. C., van der Zeijst B. A. M. 1981; Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59). Virology 108:424–434
    [Google Scholar]
  34. Spaan W. J. M., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  35. Spaan W., Cavanagh D., Horzinek M. C. 1990; Coronaviruses. In Immunochemistry of Viruses, II pp 359–379 Edited by van Regenmortel & M. H. V., Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  36. Stohlman S. A., Kyltwa S., Cohen M., Bergmann C., Polo J. M., Yeh J., Anthony R., Keck J. G. 1992; Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus. Virology 189:217–224
    [Google Scholar]
  37. Sussman M. A., Shubin R. A., Kyuwa S., Stohlman S. A. 1989; T-cell-mediated clearance of mouse hepatitis virus strain JHM from the central nervous system. Journal of Virology 63:3051–3056
    [Google Scholar]
  38. Talbot P. J., Salmi A. A., Knobler R. L., Buchmbier M. J. 1984; Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): correlation with biological activities. Virology 132:250–260
    [Google Scholar]
  39. Talbot P. J., Gervais D., Lacroix M. 1988; Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. Journal of Virology 62:3032–3036
    [Google Scholar]
  40. Wege H., Dörries R., Wege H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
  41. Williamson J. S. P., Stohlman S. A. 1990; Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. Journal of Virology 64:4589–4592
    [Google Scholar]
  42. Yamaguchi K., Goto N., Kyuwa S., Hayami M., Toyoda Y. 1991; Protection of mice from a lethal coronavirus infection in the central nervous system by adoptive transfer of virus-specific T cell clones. Journal of Neuroimmunology 32:1–9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2061
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2061
Loading

Data & Media loading...

Most cited Most Cited RSS feed