The right end of the unique region of the genome of human herpesvirus 6 U1102 contains a candidate immediate early gene enhancer and a homologue of the human cytomegalovirus US22 gene family Free

Abstract

The nucleotide sequence of a 12 kbp dIII fragment (dIII C) from the right end of the unique component of the genome of human herpesvirus 6 (HHV-6) (strain U1102) was determined. The sequence has a mean G+C content of 42% and contains approximately 28 copies of a tandemly repeated 104 to 107 bp element, which, with a single exception, contain a cleavage site for I (the I repeats). Each of these elements contains potential binding sites for transcription factors NF-κB and AP2. The I repeats lie immediately upstream of a region previously identified as a candidate immediate early (IE) gene locus and therefore may constitute an IE gene enhancer element. One incomplete and six complete open reading frames (ORFs) were identified in the unique sequence of the dIII C fragment. The predicted products of these ORFs do not include homologues of proteins encoded by members of the alpha- or gammaherpesvirus subfamily. However, the dIII C fragment does contain a homologue of the US22 gene family, previously found only in the betaherpesvirus human cytomegalovirus (HCMV). These findings provide evidence that the close phylogenetic relationship between HHV-6 and HCMV is not confined to the betaherpesvirus-specific arrangement of conserved replicative and structural genes which has been demonstrated previously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-7-1649
1992-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/7/JV0730071649.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-7-1649&mimeType=html&fmt=ahah

References

  1. Akrigg A., Wilkinson G. W. G., Oram J. D. 1985; The structure of the major immediate early gene of human cytomegalovirus strain AD169. Virus Research 2:107–121
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  3. Bankier A. T., Weston K., Barrell B. G. 1988; Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods in Enzymology 155:51–93
    [Google Scholar]
  4. Beato M. 1989; Gene regulation by steroid hormones. Cell 56:335–344
    [Google Scholar]
  5. Birnstiel M. L., Busslinger M., Strubb K. 1985; Transcription termination and 3′ processing: the end is in site!. Cell 41:349–359
    [Google Scholar]
  6. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Flecken-stein B., Schaffner W. 1985; A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530
    [Google Scholar]
  7. Briggs M., Fox J., Tedder R. S. 1988; Age prevalence of antibody to human herpesvirus-6. Lancet i:40–41
    [Google Scholar]
  8. Carrigan D. R., Knox K. K., Russler M. A. 1990; Suppression of human immunodeficiency virus type 1 replication by human herpesvirus-6. Journal of Infectious Diseases 162:844–851
    [Google Scholar]
  9. Chang Y.-N., Crawford S., Stall J., Rawlins D. R., Jeang K.-T., Hayward G. S. 1990; The palindromic series I repeats in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements. Journal of Virology 64:264–277
    [Google Scholar]
  10. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  11. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences in eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  12. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  13. Dorsch-Hasler K., Keil G. M., Weber F., Jasin M., Schaffner W., Koszinowski U. H. 1985; A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A. 82:8325–8329
    [Google Scholar]
  14. Downing R. G., Sewankambo N., Serwadda D., Honess R., Crawford D., Jarrett R., Griffin B. E. 1987; Isolation of human lymphotropic herpesviruses from Uganda. Lancet ii 390
    [Google Scholar]
  15. Efstathiou S., Lawrence G. L., Brown C. M., Barrell B. G. 1992; Identification of homologues to the human cytomegalovirus US22 gene family in human herpesvirus 6. Journal of General Virology 73:1661–1671
    [Google Scholar]
  16. Fickenscher H., Stamminger T., Rüger R., Fleckenstein B. 1989; The role of a repetitive palindromic sequence element in the human cytomegalovirus immediate early enhancer. Journal of General Virology 70:107–123
    [Google Scholar]
  17. Flemington E., Speck S. H. 1990; Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. Journal of Virology 64:1217–1226
    [Google Scholar]
  18. George D. G., Barker W. C., Hunt L. T. 1986; The Protein Identification Resource (PIR). Nucleic Acids Research 14:11–15
    [Google Scholar]
  19. Glass C. K., Holloway J. M., Devary O. V., Rosenfeld M. G. 1988; The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54:313–323
    [Google Scholar]
  20. Harnett G. B., Farr T. J., Pietroboni G. R., Bucens M. R. 1990; Frequent shedding of human herpesvirus 6 in saliva. Journal of Medical Virology 30:128–130
    [Google Scholar]
  21. Honess R. W., Compels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y.-N., Hayward G. S. 1989; Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. Journal of General Virology 70:837–855
    [Google Scholar]
  22. Hunninghake G. W., Monick M. M., Liu B., Stinski M. F. 1989; The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. Journal of Virology 63:3026–3033
    [Google Scholar]
  23. Imagawa M., Chiu R., Karin M. 1987; Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51:251–260
    [Google Scholar]
  24. Jeang K. T., Hayward S. D. 1983; Organization of the Epstein-Barr virus DNA molecule III. Location of the P3HR1 deletion junction and characterization of the Not I repeat units that form part of the template for an abundant 12-O-tetradecanoylphorbol-13-acetate-induced mRNA transcript. Journal of Virology 48:135–148
    [Google Scholar]
  25. Jeang K. T., Rawlins D. R., Rosenfeld P., Shero J. H., Kelly T., Hayward G. S. 1987; Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate early promoters of simian and human cytomegalovirus. Journal of Virology 61:1559–1570
    [Google Scholar]
  26. Jones N. C., Rigby P. W., Ziff E. B. 1988; Trara acting protein factors and the regulation of eukaryotic transcription lessons from studies on DNA tumor viruses. Genes and Development 2:267–281
    [Google Scholar]
  27. Knowles W. A., Gardner S. D. 1988; High prevalence of antibody to human herpesvirus-6 and seroconversion associated with rash in two infants. Lancet ii:912–913
    [Google Scholar]
  28. Kondo K., Kondo T., Okuno T., Takahashi M., Yamanishi K. 1991; Latent human herpesvirus 6 infection of human monocytes/ macrophages. Journal of General Virology 72:1401–1408
    [Google Scholar]
  29. Kouzarides T., Bankier A. T., Satchwell S. C., Preddie E., Barrell B. G. 1988; An immediate early gene of human cytomegalovirus encodes a membrane glycoprotein. Virology 165:151–164
    [Google Scholar]
  30. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site of eukaryotic mRNAs. Nucleic Acids Research 12:857–872
    [Google Scholar]
  31. Laux G., Freese K. U., Bornkamm G. W. 1985; Structure and evolution of two related transcription units of Epstein-Barr virus carrying small tandem repeats. Journal of Virology 56:987–995
    [Google Scholar]
  32. Lawrence G. L., Chee M., Craxton M. A., Gompels U. A., Honess R. W., Barrell B. G. 1990; Human herpesvirus-6 is closely related to human cytomegalovirus. Journal of Virology 64:287–299
    [Google Scholar]
  33. Lenardo M. J., Baltimore D. 1989; NF-kB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229
    [Google Scholar]
  34. Levy J. A., Greenspan D., Ferro F., Lennette E. T. 1990; Frequent isolation of HHV-6 from saliva and seroprevalence of the virus in the population. Lancet i:1047–1050
    [Google Scholar]
  35. Lopez C., Pellett P. E., Stewart J., Goldsmith C., Sanderlin K., Black J., Warfield D., Feorino P. 1988; Characteristics of human herpesvirus-6. Journal of Infectious Diseases 157:1271–1273
    [Google Scholar]
  36. Lubon H., Ghazal P., Hennighausen L., Reynolds-Kohler C., Lockshin C., Nelson J. A. 1989; Cell-specific activity of the modulator region in the human cytomegalovirus major immediate early gene. Molecular and Cellular Biology 9:1342–1345
    [Google Scholar]
  37. Lusso P., Markham P. D., Tschachler E., Di Marco Veronese F., Salahuddin S. Z., Ablashi D. V., Pahwa S., Grohn K., Gallo R. C. 1988; In vitro cellular tropism of human B-lympho-tropic virus (human herpesvirus-6). Journal of Experimental Medicine 167:1659–1670
    [Google Scholar]
  38. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  39. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  40. McLauchlan J., Gaffney D., Whitton J. L., Clements J. B. 1985; The consensus sequence YGTGTTYY located downstream of the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  41. Martin M. E. D., Nicholas J., Thomson B. J., Newman C., Honess R. W. 1991a; Identification of a transactivating function mapping to the putative immediate early locus of human herpesvirus-6. Journal of Virology 65:5381–5390
    [Google Scholar]
  42. Martin M. E. D., Thomson B. J., Honess R. W., Craxton M. A., Compels U. A., Liu U. A., Littler E., Arrand J. R., Teo I., Jones M. D. 1991b; The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. Journal of General Virology 72:157–168
    [Google Scholar]
  43. Mitchell P., Than R. 1989; Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378
    [Google Scholar]
  44. Mocarski E. S., Pereira L., McCormick A. L. 1988; Human cytomegalovirus ICP22, the product of the HWLF1 reading frame, is an early nuclear protein that is released from cells. Journal of General Virology 69:2613–2621
    [Google Scholar]
  45. Neipel F., Ellinger K., Fleckenstein B. 1991; The unique region of the human herpesvirus 6 genome is essentially collinear with the UL segment of human cytomegalovirus. Journal of General Virology 72:2293–2297
    [Google Scholar]
  46. Nelson J. A., Groudine M. 1986; Transcriptional regulation of the human cytomegalovirus major immediate-early gene is associated with induction of DNase I-hypersensitive sites. Molecular and Cellular Biology 6:452–461
    [Google Scholar]
  47. Nelson J. A., Reynolds-Kohler C., Smith B. A. 1987; Negative and positive regulation by a short segment in the 5′ flanking region of the human cytomegalovirus major immediate-early gene. Molecular and Cellular Biology 7:4125–4129
    [Google Scholar]
  48. Okuno T., Takahashi K., Balachandra K., Shiraki K., Yamanishi K., Takahashi M., Baba K. 1989; Seroepidemi-ology of human herpesvirus 6 infection in normal children and adults. Journal of Clinical Microbiology 27:651–653
    [Google Scholar]
  49. Okuno T., Higashi K., Shiraki K., Takahashi M., Yamanishi K. 1990; Human herpesvirus-6 (HHV-6) infection in renal transplantation. Transplantation 49:519–522
    [Google Scholar]
  50. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, U.S.A. 85:2444–2448
    [Google Scholar]
  51. Russler S. K., Tapper M. A., Knox K. K., Liepens A., Carrigan D. R. 1991; Pneumonitis associated with coinfection by human herpesvirus 6 and legionalla in an immunocompetent adult. American Journal of Pathology 138:1405–1411
    [Google Scholar]
  52. Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F., Kramarsky B., Gallo R. C. 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–600
    [Google Scholar]
  53. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  54. Saxinger C., Polesky H., Eby N., Grufferman S., Murphy R., Tegtmeir G., Parekh V., Memon S., Hung C. 1988; Antibody reactivity with HBLV (HHV-6) in U.S. populations. Journal of Virological Methods 21:199–208
    [Google Scholar]
  55. Staden R. 1980; A new computer method for the storage and handling of DNA gel reading data. Nucleic Acids Research 8:3673–3694
    [Google Scholar]
  56. Staden R. 1982; Automation of the computer handling of the gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  57. Staden R. 1984; Measurement of the effects that coding for a protein has on a DNA sequence and their use for finding genes. Nucleic Acids Research 12:551–567
    [Google Scholar]
  58. Staden R. 1986; The current status and portability of our sequencing handling software. Nucleic Acids Research 14:217–231
    [Google Scholar]
  59. Staden R. 1990; Finding protein coding regions in genomic sequences. Methods in Enzymology 183:163–180
    [Google Scholar]
  60. Stinksi M. F., Roehr T. J. 1985; Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and virus-specific rram-acting components. Journal of Virology 55:431–441
    [Google Scholar]
  61. Takahashi K., Sonoda S., Higashi K., Kondo T., Takahashi H., Takahashi M., Yamanishi K. 1989; Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. Journal of Virology 63:3161–3164
    [Google Scholar]
  62. Tedder R. S., Briggs M., Cameron C. H., Honess R. W., Robertson D., Whittle H. 1987; A novel lymphotropic herpesvirus. Lancet ii:390–391
    [Google Scholar]
  63. Teo I. A., Griffin B. E., Jones M. D. 1991; Characterization of the DNA polymerase gene of human herpesvirus-6. Journal of Virology 65:4670–4680
    [Google Scholar]
  64. Thomsen D. R., Stenberg R. M., Goins W. F., Stinski M. F. 1984; Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A. 81:659–663
    [Google Scholar]
  65. Thomson B. J., Efstathiou S., Honess R. W. 1991a; Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus-6. Nature, London 351:78–80
    [Google Scholar]
  66. Thomson B. J., Martin M. E. D., Nicholas J. 1991b; The molecular and cellular biology of human herpesvirus-6. Reviews in Medical Virology 1:89–99
    [Google Scholar]
  67. Ward K. N., Gray J. J., Efstathiou S. 1989; Brief report: primary human herpesvirus 6 infection in a patient following liver transplantation from a seropositive donor. Journal of Medical Virology 28:69–72
    [Google Scholar]
  68. Weston K., Barrell B. G. 1986; Sequence of the short unique region, short repeats and part of the the long repeat of human cytomegalovirus. Journal of Molecular Biology 192:177–208
    [Google Scholar]
  69. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet i1065–1067
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-7-1649
Loading
/content/journal/jgv/10.1099/0022-1317-73-7-1649
Loading

Data & Media loading...

Most cited Most Cited RSS feed