1887

Abstract

A recombinant baculovirus was constructed containing a copy of the hepatitis B virus (HBV) genome which was inserted to produce an in-frame fusion of the precore (pre-C) coding region with the first 11 amino acids of the polyhedrin gene. The recombinant baculovirus expressed the 25K pre-C protein and two novel proteins, of approximately 93K and 72K. Both the 93K and 72K proteins are recognized by an anti-polymerase monoclonal antibody. Northern blot analysis of the mRNA produced during infection of cells by the HBV recombinant baculovirus detected only one HBV mRNA species, suggesting that the three HBV-specific proteins expressed are translated from the same mRNA. No larger fusion proteins cross-reacting with either anti-core or polymerase antibodies were detected. These findings suggest that the two proteins encoded within the HBV polymerase gene are not produced via a core-polymerase fusion intermediate but by internal binding of ribosomes. These results are the first clear demonstration of efficient expression of two bona fide unprocessed polymerase proteins in a 1:1 ratio from an unspliced pre-C mRNA-like transcript. With the successful expression of the polymerase gene in insect cells it is now possible to produce large amounts of these proteins, allowing a more detailed structural and functional analysis of these proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-6-1515
1992-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/6/JV0730061515.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-6-1515&mimeType=html&fmt=ahah

References

  1. Aden D. P., Fogel A., Plotkin S., Damjanov I., Knowles B. 1979; Controlled synthesis of HBsAg in a differentiated human liver carcinoma derived cell line. Nature, London 282:615–616
    [Google Scholar]
  2. Bartenschlager R., Schaller H. 1988; The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription. EMBO Journal 7:4185–4192
    [Google Scholar]
  3. Bavand M. R., Laub O. 1988; Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles. Journal of Virology 62:626–0628
    [Google Scholar]
  4. Chang L.-J., Dienstag J., Ganem D., Varmus H. 1989a; Detection of antibodies against hepatitis B virus polymerase antigen in hepatitis B virus-infected patients. Hepatology 10:332–0335
    [Google Scholar]
  5. Chang L.-J., Pryciak P., Ganem D., Varmus H. 1989b; Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature, London 337:364–367
    [Google Scholar]
  6. Chang L.-J., Hirsch R. C., Ganem D., Varmus H. 1990; Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. Journal of Virology 64:5553–5558
    [Google Scholar]
  7. Fuetterer A. B., Hohn T. 1987; Involvement of nucleocapsids in reverse transcription: a general phenomenon?. Trends in Biochemistry 12:92–95
    [Google Scholar]
  8. Fung M. C., Chiu K. Y. M., Weber T., Chang T. W., Chang T. N. 1988; Detection and purification of a recombinant human B lymphotropic virus (HHV-6) in the baculovirus expression system by limiting dilution and DNA dot blot hybridization. Journal of Virological Methods 19:33–42
    [Google Scholar]
  9. Galibert F., Mandart E., Fitoussi F., Tiollais P., Channay P. 1979; Nucleotide sequence of hepatitis B virus genome cloned in E. coli. Nature, London 281:646–650
    [Google Scholar]
  10. Goto Y., Yamashita T., Arens M., Takahashi T., Hashimoto T. 1984; Characterisation of hepatitis B virus DNA polymerase. Japanese Journal of Medical Science and Biology 37:9–18
    [Google Scholar]
  11. Gough N. M., Murray K. 1982; Expression of HBV surface, core and e antigens by stable rat and mouse cell lines. Journal of Molecular Biology 162:43–67
    [Google Scholar]
  12. Hess G., Arnold W., Meyer Zum Buschenfelde K. H. 1980; Hepatitis B virus associated deoxyribonucleic acid polymerase. A partial characterisation by use of chemical agents. Klinische Wochenschrift 59:691–697
    [Google Scholar]
  13. Hirschmann S. Z., Garfinkel E. 1977; Ionic requirements of the DNA polymerase associated with serum hepatitis B antigen. Journal of Infectious Diseases 135:897–910
    [Google Scholar]
  14. Howard S. C., Ayres M. D., Possee R. D. 1986; Mapping the 5′ and 3′ ends of Autographa califomica nuclear polyhedrosis virus polyhedrin mRNA. Virus Research 5:109–119
    [Google Scholar]
  15. Jang S. K., Davies M. V., Kaufman R. J., Wimmer E. 1989; Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. Journal of Virology 63:1651–1660
    [Google Scholar]
  16. Jean-Jean O., Weimer T., De Recondo A.-M., Will H., Rossignol J.-M. 1989; Internal entry of ribosomes and ribosomal scanning involved in hepatitis B virus P gene expression. Journal of Virology 63:5451–5454
    [Google Scholar]
  17. Kaplan P. M., Greenman R. L., Gerin J. L., Purcell R. H., Robinson W. S. 1973; DNA polymerase associated with human HBsAg. Journal of Virology 12:995–1005
    [Google Scholar]
  18. Kornberg A. 1980 DNA Replication Francisco: W. H. Freeman;
    [Google Scholar]
  19. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  20. Lanford R. E., Notval L. 1990; Expression of hepatitis B virus core and precore antigens in insect cells and characterization of a core-associated kinase activity. Virology 176:223–233
    [Google Scholar]
  21. Luckow V. A., Summers M. D. 1988; Trends in the development of baculovirus expression vectors. Bio/Technology 6:47–55
    [Google Scholar]
  22. Mack D. H., Bloch W., Nath N., Sninsky J. J. 1988; Hepatitis B virus particles contain a polypeptide encoded by the largest open reading frame: a putative reverse transcriptase. Journal of Virology 62:4786–4790
    [Google Scholar]
  23. Miyanohara A., Imamura T., Araki M., Sugawara K., Ohtomo N., Matsubara K. 1986; Expression of hepatitis B core antigen gene in Saccharomyces cerevisiae: synthesis of two polypeptides translated from different initiation codons. Journal of Virology 59:176–180
    [Google Scholar]
  24. Okamoto J., Omi S., Wang Y., Imai M., Mayumi M. 1990; Trans-complementation of the C gene of human and the P gene of woodchuck hepadnaviruses. Journal of General Virology 71:959–963
    [Google Scholar]
  25. Ou J.-H., Bao H., Shih C., Tahara S. M. 1990; Preferred translation of human hepatitis B virus polymerase from core protein but not from precore protein-specific transcript. Journal of Virology 64:4578–4581
    [Google Scholar]
  26. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., Mackay P., Leadbetter G., Murray K. 1979; Hepatitis B viral genes and their expression in E. coli. Nature, London 282:575–579
    [Google Scholar]
  27. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, London 334:320–325
    [Google Scholar]
  28. Radziwill G., Tucker W., Schaller H. 1990; Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. Journal of Virology 64:613–620
    [Google Scholar]
  29. Robinson W. S. 1975; In the core of the Dane particle of hepatitis B. American Journal of Medical Sciences 270:151–159
    [Google Scholar]
  30. Roychoudhury S., Shih C. 1990; Cis-rescue of a mutated reverse transcriptase gene of human hepatitis B virus by creation of an internal ATG. Journal of Virology 64:1063–1069
    [Google Scholar]
  31. Schlicht H.-J., Radziwill G., Schaller H. 1989; Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core–polymerase fusion proteins. Cell 56:85–92
    [Google Scholar]
  32. Stemler M., Hess J., Braun R., Will H., Schröder C. H. 1988; Serological evidence for expression of the polymerase gene of human hepatitis B virus in vivo. Journal of General Virology 69:689–693
    [Google Scholar]
  33. Summers J., Mason W. S. 1982; Replication of the genome of a hepatitis B-like virus by reverse transcriptase of an RNA intermediate. Cell 29:403–415
    [Google Scholar]
  34. Toh H., Hayashida H., Miyata T. 1983; Sequence homology between retroviral reverse transcriptase and putative polymerase of hepatitis B and cauliflower mosaic virus. Nature, London 305:827–829
    [Google Scholar]
  35. Weimer T., Weimer K., Tu Z. X., Jung M. C., Pape G. R., Will H. 1989; Immunogenicity of human hepatitis B virus P gene-derived proteins. Journal of Immunology 143:3750–3756
    [Google Scholar]
  36. Will H., Salfield J., Pfaff E., Manso C., Theilmann L., Schaller H. 1986; Putative reverse transcriptase intermediates of human hepatitis B virus in primary liver carcinoma. Science 231:594–596
    [Google Scholar]
  37. Wintersberger U. 1990; Ribonucleases H of retroviral and cellular origin. Pharmacology and Therapeutics 48:259–280
    [Google Scholar]
  38. Wu T. T., Condreay L. D., Coates L., Aldrich C., Mason W. 1991; Evidence that less-than-full-length pol gene products are functional in hepadnavirus DNA synthesis. Journal of Virology 65:2155–2163
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-6-1515
Loading
/content/journal/jgv/10.1099/0022-1317-73-6-1515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error