1887

Abstract

A gene encoding an N-terminally extended precursor of 107 residues of the human immunodeficiency virus type 1 protease (PR107) was chemically synthesized and cloned into a bacterial expression vector, under the control of the promoter. PR107 was expressed alone or fused in phase to the amino or carboxy terminus of the bacterial -galactosidase (-gal). The yield of protease and -gal was found to be significantly higher when the gene for PR107 was cloned upstream of the gene (PR107–-gal). Comparisons of the level of cloned protein expression between protease precursor and mature form suggested that this enhanced expression was due to the additional 5′ sequence of the PR107 gene, and occurred at the post-transcriptional level. Autoprocessing of protease precursor and its release from the -gal fusion protein were analysed using wild-type and mutated cleavage sites. Mutations were introduced at amino acids downstream of the F–P scissile bond, at positions P4′ and P5′ in the C-terminal site (TLNF*PISP), and at position P3′ in a consensus N-terminal site (TLNF*PQITL) placed at the protease–-gal junction. The data obtained suggested that (i) autoprocessing at the carboxy-terminal F–P bond was not significantly influenced by the presence of the N-terminal precursor sequence, (ii) P4′ and P5′ substitutions in the C-terminal site had no effect on cleavage, and (iii) P3′ in the N-terminal site tolerated a wide variety of substitutions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-3-639
1992-03-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/3/JV0730030639.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-3-639&mimeType=html&fmt=ahah

References

  1. Amman E., Brosius J. 1985; ‘ATG vectors’ for regulated high-level expression of cloned genes in Escherichia coli . Gene 40:183–190
    [Google Scholar]
  2. Baum E. Z., Bebernitz G. A., Gluzman Y. 1990; β- galactosidase containing a human immunodeficiency virus protease cleavage site is cleaved and inactivated by human immunodeficiency virus protease. Proceedings of the National Academy of Sciences, U.S.A 87:10023–10027
    [Google Scholar]
  3. Cagnon C., Valverde V., Masson J. M. 1991; A new family of sugar-inducible expression vectors for E.coli . Protein Engineering (in press)
    [Google Scholar]
  4. Cann A. J., Karn J. 1989; Molecular biology of HIV: new insights into the virus cycle. AIDS 3:S19–S34
    [Google Scholar]
  5. Casadaban M., Cohen S. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . Journal of Molecular Biology 138:179–207
    [Google Scholar]
  6. Darke P. L., Leu C. T., Davis L. J., Heibach J. C., Diehl R. E., Hill W. S., Dixon R. A. F., Sigal I. S. 1988; Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease. Journal of Biological Chemistry 264:2307–2312
    [Google Scholar]
  7. Darke P. L., Nutt R. F., Brady S. F., Garsky V. M., Ciccarone T. M., Leu C. T., Lumma P. K., Freidinger R. M., Vever D. F., Sigal I. S. 1989; HIV-1 protease specificity of peptide is sufficient for processing of gag and pol polyproteins. Biochemical and Biophysical Research Communications 156:297–303
    [Google Scholar]
  8. Debouck C., Gorniak J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. 1987; Human immunodeficiency protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proceedings of the National Academy of Sciences, U.S.A 84:8903–8906
    [Google Scholar]
  9. Debouck C., Deckman I. C., Grant S. K., Craig R. J., Moore M. L. 1990; The HIV-1 aspartyl protease: maturation and substrate specificity. In Retroviral Proteases pp 9–17 Edited by Pearl L. H. London: Macmillan Press;
    [Google Scholar]
  10. Erickson J., Neidhart D. J., Van Drie J., Kempf D. J., Wang X. C., Norbeck D. W., Plattner J. J., Rittenhouse J. W., Turon M., Wideburg N., Kohlbrenner W. E., Simmer R., Helfrich R., Paul D. A., Knigge M. 1990; Design, activity, and 2.8 Å crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science 249:527–533
    [Google Scholar]
  11. Gelderblom H. R. 1991; Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5:617–638
    [Google Scholar]
  12. Giam C. Z., Boros I. 1988; In vivo and in vitro autoprocessing of human immunodeficiency virus protease expressed in E.coli . Journal of Biological Chemistry 263:14617–14620
    [Google Scholar]
  13. Graves M. C., Lim J. J., Heimer E. P., Kramer R. A. 1988; An 11 kDa-form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proceedings of the National Academy of Sciences, U.S.A 85:2449–2453
    [Google Scholar]
  14. Hansen J., Billick S., Schultze T., Sukrow S., Moelling K. 1988; Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibodies. EMBO Journal 7:1785–1791
    [Google Scholar]
  15. Harte W. E., Swaminathan S., Mansuri M. M., Martin J. C., Rosenberg I. E., Beveridge D. L. 1990; Domain communication in dynamical structure of HIV-1 protease. Proceedings of the National Academy of Sciences, U.S.A 87:8864–8868
    [Google Scholar]
  16. Hellen C. U. T., Kraüsslich H.-G., Wimmer E. 1989; Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28:9881–9890
    [Google Scholar]
  17. Hostomsky Z., Appelt K., Ogeden R. 1989; High-level expression of self-processed protease in Escherichia coli using a synthetic gene. Biochemical and Biophysical Research Communications 161:1056–1063
    [Google Scholar]
  18. Kleina L. G., Miller J. H. 1990a; Genetic studies of the lac repressor: extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. Journal of Molecular Biology 212:295–318
    [Google Scholar]
  19. Kleina L. G., Masson J.-M., Normanly J., Abelson J., Miller J. H. 1990b; Construction of E. coli amber suppression genes: synthesis of additional tRNA genes and improvement of suppressor efficiency. Journal of Molecular Biology 213:705–717
    [Google Scholar]
  20. Katoh I., Yasunaga T. Y., Ikawa Y., Yoshinaka Y. 1987; Inhibition of retroviral protease activity by an aspartyl protease inhibitor. Nature, London 329:654–656
    [Google Scholar]
  21. Katoh I., Ikawa Y., Yoshinaka Y. 1989; Retroviral protease characterized as a dimeric aspartic proteinase. Journal of Virology 63:2226–2232
    [Google Scholar]
  22. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A. F., Scolnick E. M., Sigal I. S. 1988; Active immunodeficiency virus protease is required for viral infectivity. Proceedings of the National Academy of Sciences, U.S.A 85:4686–4690
    [Google Scholar]
  23. Kraüsslich H.-G., Wimmer E. 1988; Viral proteinases. Annual Review of Biochemistry 57:701–754
    [Google Scholar]
  24. Kraüsslich H.-G., Ingraham R. H., Skoog M. T., Wimmer E., Pallai P. V., Carter C. A. 1989; Activity of purified biosynthetic proteinase of human immunodeficiency virus natural substrates and synthetic peptides. Proceedings of the National Academy of Sciences, U.S.A 86:807–811
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  26. Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A., Wood S., Merson J. R., Whittle P. J., Danley D. E., Geoghegan K. F., Hawrylic S. J., Lee S. E., Scheld K. G., Hobart P. M. 1989; X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature, London Mil299–302
    [Google Scholar]
  27. LeGrice S. F. J., Mills J., Mous J. 1988; Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation. EMBO Journal 7:2547–2553
    [Google Scholar]
  28. Lillehoj E. P., Salazar F. H. R., Mervis R. J., Raum M. G., Chan H. W., Ahmad N., Venkatesan S. 1988; Purification and structural characterization of the putative gag-pol protease of human immunodeficiency virus. Journal of Virology 62:3053–3058
    [Google Scholar]
  29. Loeb D. D., Hutchison C. A. III, Edgell M. H., Farmerie W. G., Swanstrom R. 1989; Mutational analysis of human immunodeficiency virus type 1 protease suggests functional homology with aspartic proteinases. Journal of Virology 63:111–121
    [Google Scholar]
  30. Louis J. M., McDonald R. A., Nashed N. T., Wondrak E. M., Jerina D. M., Oroszlan S., Mora P. T. 1991; Autoprocessing of the HIV-1 protease using purified wild-type and mutated fusion proteins expressed at high levels in Escherichia coli . European Journal of Biochemistry 199:361–369
    [Google Scholar]
  31. Margolin N., Heath W., Osborne E., Lai M., Vlahos C. 1990; Substitutions at the P24 site of gag p17–p24 affects cleavage efficiency by HIV-1 protease. Biochemical and Biophysical Research Communications 167:554–560
    [Google Scholar]
  32. Masson J. M., Miller J. H. 1986; Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. Gene 47:179–183
    [Google Scholar]
  33. Mervis R. J., Ahmad N., Lillehoj E. P., Raum M. G., Salazar F. H. R., Chang H. W., Venkatesan S. 1988; The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of post-translational modifications, and evidence for alternative gag precursors. Journal of Virology 62:3993–4002
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Miller M., Jaskolski M., Rao J. K. M., Leis J., Wlodawer A. 1989a; Crystal structure of retroviral protease proves relationship to aspartic protease family. Nature, London 227:576–579
    [Google Scholar]
  36. Miller M., Schneider J., Sathyanarayana B. K., Toth M. V., Marshall G. R., Clawson L., Selk L., Kent S. B. H., Wlodawer A. 1989b; Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science 246:1149–1152
    [Google Scholar]
  37. Miller M., Swain A. L., Jaskolski M., Sathyanarayana B. K., Marshall G. R., Rich D., Kent S. B. H., Wlodawer A. 1990; X-ray analysis of HIV-1 protease and its complexes with inhibitors. In Retroviral Proteases pp 93–106 Edited by Pearl L. H. London: MacMillan Press;
    [Google Scholar]
  38. Moore M. L., Bryan W. M., Fakhoury S. A., Magaard V. W., Huffman W. F., Dayton B. D., Meek T. D., Hyland L., Dreyer G. B., Metcalf B. W., Strickler J. E., Gorniak J. G., Debouck C. 1989; Peptide substrates and inhibitors of the HIV-1 protease. Biochemical and Biophysical Research Communications 159:420–426
    [Google Scholar]
  39. Mous J., Heimer E. P., LeGrice S. F. J. 1988; Processing protease and reverse transcriptase from human immunodeficiency virus type 1 polyprotein in Escherichia coli . Journal of Virology 62:1433–1436
    [Google Scholar]
  40. Navia M. A., Fitzgerald P. M. D., McKeever B. M., Leu C.-T., Heimbach J. C., Herber W. K., Sigal I. S., Darke P. L., Springer J. P. 1989; Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature, London 337:615–620
    [Google Scholar]
  41. Normanly J., Masson J.-M., Kleina L. G., Abelson J., Miller J. H. 1986; Construction of two E. coli amber suppressor genes: tRNACUA phe and tRNACUA cys . Proceedings of the National Academy of Sciences, U.S.A 83:6548–6552
    [Google Scholar]
  42. Normanly J., Kleina L. G., Masson J.-M., Abelson J., Miller J. H. 1990; Construction of E. coli amber suppressor genes: determination of tRNA specificity. Journal of Molecular Biology 213:719–726
    [Google Scholar]
  43. Partin K., Kraüsslich H.-G., Ehrlich L., Wimmer E., Carter C. 1990; Mutational analysis of a native substrate of the human immunodeficiency virus type 1 proteinase. Journal of Virology 64:3938–3947
    [Google Scholar]
  44. Peng C., Ho B. K., Chang T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. Journal of Virology 63:2550–2556
    [Google Scholar]
  45. Ploug M., Jensen A. L., Barkholt V. 1989; Determination of amino acid compositions and NH2 terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Analytical Biochemistry 181:33–39
    [Google Scholar]
  46. Rivière Y., Blank V., Kourilsky P., Israël A. 1991; Processing of the precursor of NF-kB by the HIV-1 protease during acute infection. Nature, London 350:625–626
    [Google Scholar]
  47. Royer M., Cerutti M., Gay B., Hong S. S., Devauchelle G., Boulanger P. 1991; Functional domains of HIV-1 gag-polyprotein expressed in baculovirus-infected cells. Virology 184:417–422
    [Google Scholar]
  48. Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L. 1989; High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO Journal 8:2179–2188
    [Google Scholar]
  49. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  50. Schägger H., Von Jagow G. 1987; Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166:368–379
    [Google Scholar]
  51. Schneider J., Kent S. B. H. 1988; Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 54:363–368
    [Google Scholar]
  52. Seelmeier S., Schmidt H., Turk V., Von Der Helm K. 1988; Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin. Proceedings of the National Academy of Sciences, U.S.A 85:6612–6616
    [Google Scholar]
  53. Skalka A. M. 1989; Retroviral proteases: first glimpse at the anatomy of a processing machine. Cell 56:911–913
    [Google Scholar]
  54. Strickler J. E., Gorniak J., Dayton B., Meek T., Moore M., Magaard V., Malinowski J., Debouck C. 1989; Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli . Proteins: Structure, Function and Genetics 6:139–154
    [Google Scholar]
  55. Suguna K., Padlan E. A., Smith C. W., Carlson W. D., Davies D. B. 1987; Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus sinensis: implications for a mechanism of action. Proceedings of the National Academy of Sciences, U.S.A 84:7009–7013
    [Google Scholar]
  56. Swanstrom R., Loeb D. D., Everitt L., Hutchison C. A. III 1989; Genetic analysis of HIV-1 protease. Viral proteinases as target for chemotherapy. In Current Communications in Molecular Biology pp 155–160 Edited by Kraüsslich H. G., Oroszlan S., Wimmer E. New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  57. Taylor J. W., Ott J., Eckstein F. 1985; The rapid generation of oligonucleotide directed mutations at high frequency using phosphorothioate modified DNA. Nucleic Acids Research 13:8765–8785
    [Google Scholar]
  58. Tomasselli A. G., Howe W. J., Sawyer T. K., Wlodawer A., Heinriksot R. L. 1991; The complexities of AIDS: an assessment of the HIV protease as a therapeutic target. Chimica oggi 9:6–27
    [Google Scholar]
  59. Tritch R., Cheng Y. S. E., Yin F. H., Erickson-Virtanen S. 1991; Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. Journal of Virology 65:922–930
    [Google Scholar]
  60. Weber I. T., Miller M., Jaskolski M., Leis J., Skalka A. M., Wlodawer A. 1989; Molecular modeling of the HIV-1 protease and its substrate binding site. Science 243:928–931
    [Google Scholar]
  61. Wills J. W., Craven R. C. 1991; Form, function, and use of retroviral Gag proteins. AIDS 5:639–654
    [Google Scholar]
  62. Wlodawer A., Miller M., Jaskolski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. H. 1989; Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245:616–621
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-3-639
Loading
/content/journal/jgv/10.1099/0022-1317-73-3-639
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error