On the cellular localization of the components of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein Free

Abstract

We constructed recombinant viruses based on the herpes simplex virus type 1 mutant K which individually were able to express the products of four viral DNA replication genes (UL5, UL8, UL9 and UL52) in the absence of any of the other proteins required for viral DNA synthesis. These viruses were used in immunofluorescence experiments to investigate the cellular localization of the four replication proteins expressed. The results demonstrated that all three components of the viral helicase-primase complex (UL5, UL8 and UL52 proteins) must be co-expressed to allow their efficient localization to the nucleus. Since the UL5 and UL52 proteins together form a complex which is enzymatically indistinguishable from a complex formed from all three proteins, a possible role of the UL8 protein may be in facilitating nuclear uptake. The UL9 protein (origin-binding protein) efficiently entered the cell nucleus when expressed alone. Both UL9 protein and the tripartite helicase-primase complex exhibited patterns of fluorescence which resembled the ‘pre-replicative sites’ described previously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-3-531
1992-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/3/JV0730030531.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-3-531&mimeType=html&fmt=ahah

References

  1. Bush M., Yager D. R., Gao M., Weisshart K., Marcy A. I., Coen D. M., Knipe D. M. 1991; Correct intranuclear localization of herpes simplex virus DNA polymerase requires the viral ICP8 DNA-binding protein. Journal of Virology 65:1082–1089
    [Google Scholar]
  2. Calder J. M., Stow N. D. 1990; Herpes simplex virus helicase–primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Research 18:3573–3578
    [Google Scholar]
  3. Carmichael E. P., Weller S. K. 1989; Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6::lac Z insertion mutation. Journal of Virology 63:591–599
    [Google Scholar]
  4. Challberg M. D., Kelly T. J. 1989; Animal virus DNA replication. Annual Review of Biochemistry 58:671–717
    [Google Scholar]
  5. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the proteincoding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  6. Crute J. J., Mocarski E. S., Lehman I. R. 1988; A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Research 16:6585–6596
    [Google Scholar]
  7. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proceedings of the National Academy of Sciences, U.S.A 86:2186–2189
    [Google Scholar]
  8. de Bruyn Kops A., Knipe D. M. 1988; Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55:857–868
    [Google Scholar]
  9. Dodson M. S., Lehman I. R. 1991; Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proceedings of the National Academy of Sciences, U.S.A 88:1105–1109
    [Google Scholar]
  10. Dodson M. S., Crute J. J., Bruckner R. C., Lehman I. R. 1989; Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. Journal of Biological Chemistry 264:20835–20838
    [Google Scholar]
  11. Gallo M. L., Dorsky D. I., Crumpacker C. S., Parris D. S. 1989; The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. Journal of Virology 63:5023–5029
    [Google Scholar]
  12. Goodrich L. D., Schaffer P. A., Dorsky D. I., Crumpacker C. S., Parris D. S. 1990; Localization of the herpes simplex virus type 165-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis. Journal of Virology 64:5738–5749
    [Google Scholar]
  13. Gottlieb J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  14. Heilbronn R., zur Hausen H. 1989; A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome. Journal of Virology 63:3683–3692
    [Google Scholar]
  15. Hernandez T. R., Lehman I. R. 1990; Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. Journal of Biological Chemistry 265:11227–11232
    [Google Scholar]
  16. Hummel M., Arsenakis M., Marchini A., Lee L., Roizman B., Kieff E. 1986; Herpes simplex virus expressing Epstein-Barr virus nuclear antigen 1. Virology 148:337–348
    [Google Scholar]
  17. Knipe D. M. 1989; The role of viral and cellular nuclear proteins in herpes simplex virus replication. Advances in Virus Research 37:85–123
    [Google Scholar]
  18. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988a; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  19. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. 1988b; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  20. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  21. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  22. Olivo P. D., Nelson N. J., Challberg M. D. 1988; Herpes simplex virus DNA replication: the UL9 gene encodes an originbinding protein. Proceedings of the National Academy of Sciences, U.S.A 85:5414–5418
    [Google Scholar]
  23. Olivo P. D., Nelson N. J., Challberg M. D. 1989; Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. Journal of Virology 63:196–204
    [Google Scholar]
  24. Preston C. M. 1979; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant ts K. Journal of Virology 29:275–284
    [Google Scholar]
  25. Quinlan M. P., Knife D. M. 1985; A genetic test for expression of a functional herpes simplex virus DNA-binding protein from a transfected plasmid. Journal of Virology 54:619–622
    [Google Scholar]
  26. Quinlan M. P., Chen L. B., Knife D. M. 1984; The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36:857–868
    [Google Scholar]
  27. Quinn J. P., McGeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  28. Rixon F. J., Atkinson M. A., Hay J. 1983; Intranuclear distribution of herpes simplex virus type 2 DNA synthesis: examination by light and electron microscopy. Journal of General Virology 64:2087–2092
    [Google Scholar]
  29. Silver P. A. 1991; How proteins enter the nucleus. Cell 64:489–497
    [Google Scholar]
  30. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, London 285:329–330
    [Google Scholar]
  31. Weir H. M., Calder J. M., Stow N. D. 1989; Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Research 17:1409–1425
    [Google Scholar]
  32. Weller S. K. 1991; Genetic analysis of HSV genes required for genome replication. In Herpesvirus Transcription and its Regulation pp 105–135 Edited by Wagner E. K. Boca Raton: CRC Press;
    [Google Scholar]
  33. Weller S. K., Lee K. J., Sabourin D. J., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. Journal of Virology 45:354–366
    [Google Scholar]
  34. Wilcock D., Lane D. P. 1991; Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature, London 349:429–431
    [Google Scholar]
  35. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  36. Wymer J. P., Chung T. D., Chang Y.-N., Hayward G. S., Aurelian L. 1989; Identification of immediate-early-type cis response elements in the promoter of the ribonucleotide reductase large subunit from herpes simplex virus type 2. Journal of Virology 63:2773–2784
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-3-531
Loading
/content/journal/jgv/10.1099/0022-1317-73-3-531
Loading

Data & Media loading...

Most cited Most Cited RSS feed