1887

Abstract

The minimal set of seven herpes simplex virus type 1 (HSV-1) genes required for viral origin-dependent DNA synthesis was previously identified using a transient replication assay in a mammalian cell line permissive for HSV-1 growth. We have constructed recombinant baculoviruses which efficiently express the products of each of these seven genes in infected (Sf) insect cells. When Sf cells were transfected with a plasmid containing a functional HSV-1 origin of replication, and subsequently superinfected with a mixture of these seven viruses, the input plasmid was amplified. This amplification exhibited properties characteristic of genuine HSV-1 DNA replication: all seven HSV-1 replication gene products were required, replicated DNA was detected as concatemers, and mutated origins were impaired to similar extents in insect cells and cells permissive for HSV-1 replication. These results demonstrate that the HSV-1 proteins expressed in Sf cells are fully competent for viral DNA synthesis, and indicate that any host function essential in mammalian cells must also be present in the infected insect cells. This system also provides a convenient method by which mutated replication proteins can be screened for function and produced in amounts sufficient for biochemical studies. Using this approach we show that the ability of the UL9 protein to bind to the viral origins of replication is not sufficient for it to facilitate DNA synthesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-2-313
1992-02-01
2022-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/2/JV0730020313.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-2-313&mimeType=html&fmt=ahah

References

  1. Brown M., Faulkner P. 1977; A plaque assay for nuclear polyhedrosis viruses using a solid overlay. Journal of General Virology 36:361–364
    [Google Scholar]
  2. Bruckner R. C., Crute J. J., Dodson M. S., Lehman I. R. 1991; The herpes simplex virus 1 origin binding protein: a novel DNA helicase. Journal of Biological Chemistry 266:2669–2674
    [Google Scholar]
  3. Calder J. M., Stow N. D. 1990; Herpes simplex virus helicase-primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Research 18:3573–3578
    [Google Scholar]
  4. Challberg M. D., Kelly T. J. 1989; Animal virus DNA replication. Annual Review of Biochemistry 58:671–717
    [Google Scholar]
  5. Crute J. J., Lehman I. R. 1989; Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5′-3′ exonuclease with ribonuclease H activity. Journal of Biological Chemistry 264:1926b–19270
    [Google Scholar]
  6. Crute L. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proceedings of the National Academy of Sciences, U,. S,. A 86:2186–2189
    [Google Scholar]
  7. Dodson M. S., Lehman I. R. 1991; Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proceedings of the National Academy of Sciences, U.S.A 88:1105–1109
    [Google Scholar]
  8. Dodson M. S., Crute J. J., Bruckner R. C., Lehman I. R. 1989; Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. Journal of Biological Chemistry 264:20835–20838
    [Google Scholar]
  9. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. 1987; Lipofection: a highly efficient, lipid-mediated DNA transfection procedure. Proceedings of the National Academy of Sciences, U,. S,. A. 84:7413–7417
    [Google Scholar]
  10. Gallo M. L. Dorsky L. D., Crumpacker C. S., Parris D. S. 1989; The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. Journal of Virology 63:5023–5029
    [Google Scholar]
  11. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  12. Gottlieb J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  13. Heilbronn R., zur Hausen H. 1989; A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome. Journal of Virology 63:3683–3692
    [Google Scholar]
  14. Kitts P. A., Ayres M. D., Possee R. D. 1990; Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Research 18:5667–5672
    [Google Scholar]
  15. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988a; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  16. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. 1988b; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  17. Marcy L. A., Olivo P. D., Challberg M. D., Coen D. M. 1990; Enzymatic activities of overexpressed herpes simplex virus DNA polymerase purified from recombinant baculovirus-infected insect cells. Nucleic Acids Research 18:1207–1215
    [Google Scholar]
  18. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  19. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. L. 1987; Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. Journal of General Virology 68:1233–1250
    [Google Scholar]
  20. Mocarski E. S., Roizman B. 1982; Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication. Proceedings of the National Academy of Sciences, U.S.A. 79:5626–5630
    [Google Scholar]
  21. Olivo P. D., Nelson N. J., Challberg M. D. 1988; Herpes simplex virus DNA replication: the UL9 gene encodes an originbinding protein. Proceedings of the National Academy of Sciences, U.S.A. 85:5414–5418
    [Google Scholar]
  22. Olivo P. D., Nelson N. J., Challberg M. D. 1989; Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. Journal of Virology 63:196–204
    [Google Scholar]
  23. Possee R. D., Howard S. C. 1987; Analysis of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus. Nucleic Acids Research 15:10233–10248
    [Google Scholar]
  24. Powell K. L., Purifoy D. J. M. 1977; Nonstructural proteins of herpes simplex virus: I. Purification of the induced DNA polymerase. Journal of Virology 24:618–626
    [Google Scholar]
  25. Quinn J. P., McGeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  26. Rose J. K., Buonocore L., Whitt M. A. 1991; A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10:520–525
    [Google Scholar]
  27. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295–304
    [Google Scholar]
  28. Stow N. D. 1982; Localization of an origin of DNA replication within the TRS/IRS repeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  29. Stow N. D., McMonagle E. C. 1983; Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  30. Stow N. D., McMonagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  31. Vaughan P. J., Purifoy D. J. M., Powell K. L. 1985; DNA-binding protein associated with herpes simplex virus DNA polymerase. Journal of Virology 53:501–508
    [Google Scholar]
  32. Wardlaw A. C. 1985 Practical Statistics for Experimental Biologists pp 118–140 Chichester: John Wiley & Sons;
    [Google Scholar]
  33. Weir H. M., Stow N. D. 1990; Two binding sites for the herpes simplex virus type 1 UL9 protein are required for efficient activity of the oris replication origin. Journal of General Virology 71:1379–1385
    [Google Scholar]
  34. Weir H. M., Calder J. M., Stow N. D. 1989; Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Research 17:1409–1425
    [Google Scholar]
  35. Weller S. K. 1991; Genetic analysis of HSV genes required for genome replication. In Herpesvirus Transcription and Its Regulation pp 105–135 Edited by Wagner E. K. Boca Raton: CRC Press;
    [Google Scholar]
  36. Weller S. K., Lee K. J., Sabourin D. J., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. Journal of Virology 45:354–366
    [Google Scholar]
  37. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing and functional analysis of oriL , a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  38. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988a; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  39. Wu C., Tsai C., Wilson S. 1988b; Affinity chromatography of sequence-specific DNA-binding proteins. In Genetic Engineering: Principles and Methods pp 67–74 Edited by Setlow J. K. New York: Plenum Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-2-313
Loading
/content/journal/jgv/10.1099/0022-1317-73-2-313
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error