Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65 Free

Abstract

Hexamethylene bisacetamide (HMBA) and DMSO are known to induce differentiation of cultured erythroleukaemic cells and to enhance the reactivation of latent herpes simplex virus (HSV) after explantation of ganglia. We report that the presence of these compounds in cell culture medium overcomes the replication defect of 1814, an HSV-1 mutant with an insertion mutation that inactivates the virion trans-inducing factor, Vmw65 (VP16). The effect of HMBA was not cell type-specific and was attained even by a short exposure (1.5 to 5 h) to the agent early after infection. The presence of HMBA resulted in an increase in immediate early (IE) RNA accumulation after infection of cells in the presence of cycloheximide, such that RNA levels in 1814-infected cells approached the values observed in wild-type HSV-1-infected cells in the absence of HMBA. Transport of viral DNA to the cell nucleus was not affected by HMBA. The results suggest that HMBA- and DMSO-mediated enhancement of reactivation from latency is due to an increase in IE RNA production. In addition, these studies demonstrate a primary effect of HMBA on gene regulation which may be a paradigm for initial events during erythroleukaemic cell differentiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-2-285
1992-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/2/JV0730020285.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-2-285&mimeType=html&fmt=ahah

References

  1. Ace C. I., Dalrymple M. A., Ramsay F. H., Preston V. G., Preston C. M. 1988; Mutational analysis of the herpes simplex virus type 1 trans-inducing factor Vmw65. Journal of General Virology 69:2595–2605
    [Google Scholar]
  2. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. 1989; Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate early gene expression. Journal of Virology 63:2260–2269
    [Google Scholar]
  3. Bernstein D., Kappes J. C. 1988; Enhanced in vitro reactivation of latent herpes simplex virus from neural and peripheral tissues with hexamethylenebisacetamide. Archives of Virology 99:57–65
    [Google Scholar]
  4. Campbell M. E. M., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DN A sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–9
    [Google Scholar]
  5. Campbell P. K., Kulozik A. E., Woodham J. P., Jones R. W. 1990; Induction by HMBA and DMSO of genes introduced into mouse erythroleukemia and other cell lines by transient transfection. Genes and Development 4:1252–1266
    [Google Scholar]
  6. Everett R. D. 1989; Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. Journal of General Virology 70:1185–1202
    [Google Scholar]
  7. Faletto D. L., Arrow A. S., Macova I. G. 1985; An early decrease in phosphoinositide turnover occurs on induction of Friend cell differentiation and precedes the decrease in c-myc expression. Cell 43:315–325
    [Google Scholar]
  8. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  9. Friend C., Scher W., Holland J. G., Sato T. 1971; Hemoglobin synthesis in murine virus-induced leukemia cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proceedings of the National Academy of Sciences, U.S.A 68:378–382
    [Google Scholar]
  10. Gusella J. F., Geller R., Clarke B., Weeks V., Housman D. 1976; Commitment to erythroid differentiation by Friend erythro-leukemia cells: a stochastic analysis. Cell 9:221–229
    [Google Scholar]
  11. Harris R. A., Preston C. M. 1991; Establishment of latency in vitro by the herpes simplex virus type 1 mutant 611814. Journal of General Virology 72:907–913
    [Google Scholar]
  12. Katan M., Haigh A., Verrijzer C. P., van der Vleit P. C., O’Hare P. 1990; Characterization of a cellular factor which interacts functionally with oct-1 in the assembly of a multicomponent transcription complex. Nucleic Acids Research 18:6871–6880
    [Google Scholar]
  13. Kondo Y., Yura Y., Iga H., Yanagawa T., Yoshida H., Furumoto N., Sato M. 1990; Effect of hexamethylene bisacetamide and cyclosporin A on recovery of herpes simplex virus type 2 from the in vitro model of latency in a human neuroblastoma cell line. Cancer Research 50:7852–7857
    [Google Scholar]
  14. Kristie T. M., Sharp P. A. 1990; Interactions of the oct-1 POU subdomains with specific DNA sequences and with the HSV α-trans-activator protein. Genes and Development 4:2383–2396
    [Google Scholar]
  15. Lang J. C., Wilkie N. M., Spandidos D. A. 1983; Characterization of eukaryotic transcriptional control signals by assay of herpes simplex virus type 1 thymidine kinase. Journal of General Virology 64:2679–2696
    [Google Scholar]
  16. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989; Immediate early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  17. Low M., Hay J., Keir H. M. 1969; DNA of herpes simplex virus is not a substrate for methylation in vivo. Journal of Molecular Biology 46:205–207
    [Google Scholar]
  18. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. L., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  19. Marks P. A., Sheffery M., Rifkind R. A. 1987; Induction of transformed cells to terminal differentiation and the modulation of gene expression. Cancer Research 47:659–666
    [Google Scholar]
  20. Melloni E., Pontremoli S., Michetti M., Sacco O., Cakiroglu A. G., Jackson J. F., Rifkind R. A., Marks P. A. 1987; Protein kinase C activity and hexamethylenebisacetamide-induced erythroleukemia cell differentiation. Proceedings of the National Academy of Sciences, U.S.A 84:5282–5286
    [Google Scholar]
  21. O’Hare P., Goding C. R. 1988; Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell 52:435–445
    [Google Scholar]
  22. Peter B., Man Y. M., Begg C. E., Gall I., Leader D. P. 1988; Mouse skeletal γ-actin: analysis and implications of the structure of cloned cDNA and processed pseudogenes. Journal of Molecular Biology 203:665–675
    [Google Scholar]
  23. Post L. E., Mackem S., Roizman B. 1981; Regulation of a genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with a gene promoters. Cell 24:555–565
    [Google Scholar]
  24. Preston C. M. 1979; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperaturesensitive mutant tsK. Journal of Virology 29:275–284
    [Google Scholar]
  25. Preston C. M., Frame M. C., Campbell M. E. M. 1988; A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory region. Cell 52:425–434
    [Google Scholar]
  26. Ramsay R. G., Ikeda K., Rifkind R. A., Marks P. A. 1986; Changes in gene expression associated with induced differentiation of erythroleukemia: protooncogenes, globin genes and cell division. Proceedings of the National Academy of Sciences, U. S. A. 83:6849–6853
    [Google Scholar]
  27. Razin A., Levin A., Kafri T., Agontini S., Gomi T., Cantoni G. L. 1988; Relationship between transient DNA hypomethylation and erythroid differentiation of murine erythroleukemia cells. Proceedings of the National Academy of Sciences, U.S.A 85:9003–9006
    [Google Scholar]
  28. Reuben R. C., Rifkind R. A., Marks P. A. 1980; Chemically induced murine erythroleukemic differentiation. Biochimica et biophysica acta 605:325–346
    [Google Scholar]
  29. Richon V. M., Ramsay R. G., Rifkind R. A., Marks P. A. 1989; Modulation of the c-myb, c-myc and p53 mRNA and protein levels during induced murine erythroleukemia cell differentiation. Onco gene 4:165–173
    [Google Scholar]
  30. Roizman B., Sears A. E. 1987; An inquiry into the mechanisms of herpes simplex virus latency. Annual Review of Microbiology 41:543–571
    [Google Scholar]
  31. Sadowski I., Ma J., Triezenberg S., Ptashne M. 1988; GAL4-VP16 is an unusually potent transcriptional activator. Nature, London 335:563–564
    [Google Scholar]
  32. Steiner I., Spivack J. G., Desumane S. L., Ace C. I., Preston C. M., Fraser N. W. 1990; A herpes simplex virus type 1 mutant containing a non-transinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. Journal of Virology 64:1630–1638
    [Google Scholar]
  33. Stephanopoulos D. E., Kappes J. C., Bernstein D. I. 1988; Enhanced in vitro reactivation of herpes simplex virus type 2 from latently infected guinea-pig neural tissues by 5-azacytidine. Journal of General Virology 69:1079–1083
    [Google Scholar]
  34. Stern S., Tanaka M., Herr W. 1989; The oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature, London 341:624–630
    [Google Scholar]
  35. Stevens J. G. 1989; Human herpesviruses: a consideration of the latent state. Microbiological Reviews 53:318–332
    [Google Scholar]
  36. Stow E. C., Stow N. D. 1989; Complementation of a herpes simplex virus type 1 Vmw 110 deletion mutant by human cytomegalo virus. Journal of General Virology 70:695–704
    [Google Scholar]
  37. Stow N. D., Stow E. C. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. Journal of General Virology 67:2571–2585
    [Google Scholar]
  38. Triezenberg S. J., Kingsbury R. C., McKnight S. L. 1988; Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes and Development 2:718–729
    [Google Scholar]
  39. Whitby A. J., Blyth W. A., Hill T. J. 1987; The effect of DNA hypomethylating agents on the reactivation of herpes simplex virus from latently infected mouse ganglia in vitro. Archives of Virology 97:137–144
    [Google Scholar]
  40. Wilkie N. M., Clements J. B., Boll W., Mantei N., Lonsdale D., Weissman C. 1979; Hybrid plasmids containing an active thymidine kinase gene of herpes simplex virus. 1. Nucleic Acids Research 7:859–877
    [Google Scholar]
  41. Yura Y., Kondo Y., Iga H., Harada K., Tujimoto H., Yanagawa T., Yoshida H. M. 1991; Enhanced replication of herpes simplex virus by hexamethylene bisacetamide. Journal of the National Cancer Institute 83186–189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-2-285
Loading
/content/journal/jgv/10.1099/0022-1317-73-2-285
Loading

Data & Media loading...

Most cited Most Cited RSS feed