1887

Abstract

We have identified the binding site of monoclonal antibodies (MAbs) against the S2 subunit of the bovine coronavirus spike (S) glycoprotein. The location of this site was first investigated by using prokaryotic expression of DNA restriction fragments covering the entire S gene. The amino acid sequence containing the antibody binding site was shortened from 70 to 20 amino acids by digestion of plasmid DNA with exonuclease III, followed by sequencing of the smallest digestion product encoding an immunoreactive fusion protein. Finally we synthesized a set of nonapeptides covering the 20 amino acid sequence extending from the N-terminal residue of the S2 subunit (Ala 769 to Tyr 798). MAbs reacted mainly with six consecutive overlapping peptides with the sequence TTGYRFTN-FEPFTV. Polyclonal antibodies from hyperimmunized or convalescent animals reacted only with the recombinant proteins identified by MAbs, and the hyperimmune serum bound to the same set of peptides. This suggests that this highly conserved linear antigenic determinant corresponds to an immunodominant region. This region resembles both in location and immunodominance the linear determinant defined on the infectious bronchitis virus S2 subunit. The presence of similar regions in the N-terminal region of the S2 subunit of other coronaviruses is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-12-3289
1992-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/12/JV0730123289.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-12-3289&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301
    [Google Scholar]
  2. Boireau P., Cruciere C., Laporte J. 1990; Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. Journal of General Virology 71:487–492
    [Google Scholar]
  3. Bressan G. M., Stanley K. K. 1987; pUEX, a bacterial expression vector related to pEX with universal host specificity. Nucleic Acids Research 15:10056
    [Google Scholar]
  4. Buckland R., Giraudon P., Wild F. 1989; Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. Journal of General Virology 70:435–441
    [Google Scholar]
  5. Cavanagh D. 1983; Coronavirus IBV: structural characterization of the spike protein. Journal of General Virology 64:2577–2583
    [Google Scholar]
  6. Cavanagh D., Davis P. J., Mockett A. P. 1988; Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Research 11:141–150
    [Google Scholar]
  7. Correa I., Gebauer F., Bullido M. J., Suñé C., Baay M. F. D., Zwaagstra K. A., Posthumus W. P. A., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. Journal of General Virology 71:271–279
    [Google Scholar]
  8. Crouch C. F., Bielefeldt Ohmann H., Watts T. C., Babiuk L. A. 1985; Chronic shedding of bovine enteric coronavirus antigen-antibody complexes by clinically normal cows. Journal of General Virology 66:1489–1500
    [Google Scholar]
  9. Dea S., Tijssen P. 1989; Antigenic and polypeptide structure of turkey enteric coronaviruses as defined by monoclonal antibodies. Journal of General Virology 70:1725–1741
    [Google Scholar]
  10. De Groot R. J., Luytjes W., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  11. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. Journal of General Virology 71:1313–1323
    [Google Scholar]
  12. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  13. Gallagher T. M., Parker S. E., Buchmeier M. J. 1990; Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. Journal of Virology 64:731–741
    [Google Scholar]
  14. Getzoff E. D., Geysen H. M., Rodda S. J., Alexander H., Tainer J. A., Lerner R. A. 1987; Mechanisms of antibody binding to a protein. Science 235:1191–1196
    [Google Scholar]
  15. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Procedings of the National Academy of Sciences, U.S.A. 81:3998–4002
    [Google Scholar]
  16. Gouet P., Contrepois M., Dubourguier H., Riou Y., Scherrer R., Laporte J., Vautherot J. F., Cohen J., L’Haridon R. 1978; The experimental production of diarrhea in colostrum-deprived axenic and gnotoxenic calves with enteropathogenic E. coli rotavirus, coronavirus and in combined infection of rotavirus and E. coli . Annales de Recherches Veterinaires 9:433–440
    [Google Scholar]
  17. Hanahan D. 1983; Studies on the transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:577–580
    [Google Scholar]
  18. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  19. Kienzle T. E., Abraham S., Hogue B. G., Brian D. A. 1990; Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. Journal of Virology 64:1834–1838
    [Google Scholar]
  20. King B., Brian D. A. 1982; Bovine coronavirus structural proteins. Journal of Virology 42:700–707
    [Google Scholar]
  21. Koolen M. J. M., Borst M. A. J., Horzinek M. C., Spaan W. J. M. 1990; Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. Journal of Virology 64:6270–6273
    [Google Scholar]
  22. Kusters J. G., Jager E. J., Lenstra J. A., Koch G., Posthumus W. P. A., Meloen R. H., van der Zeijst B. A. M. 1989; Analysis of an immunodominant region of infectious bronchitis virus. Journal of Immunology 143:2692–2698
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Lenstra J. A., Kusters J. G., Koch G., van der Zeijst B. A. M. 1989; Antigenicity of the peplomer protein of infectious bronchitis virus. Molecular Immunology 26:7–15
    [Google Scholar]
  25. L’Haridon R., Scherrer R., Vautherot J. F., La Bonnardiere C., Laporte J., Cohen J. 1981; Adaptation d’un isolement de coronavirus entérique bovin à la culture cellulaire et caracterisation de la souche obtenue. Annales de Recherches Veterinaires 12:243–251
    [Google Scholar]
  26. Lim H. M., Péne J. J. 1988; Optimal conditions for supercoil DNA sequencing with the Escherichia coli DNA polymerase I large fragment. Gene Analysis Techniques 5:32–39
    [Google Scholar]
  27. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  28. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. 1989; Amino-acid sequence of a conserved neutralizing epitope of murine coronavirus. Journal of Virology 63:1408–1412
    [Google Scholar]
  29. Posthumus W. P. A., Lenstra J. A., Schaaper W. M. M., van Nieuwstadt A. P., Enjuanes L., Meloen R. H. 1990; Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. Journal of Virology 64:3304–3309
    [Google Scholar]
  30. Routledge E., Stauber R., Pfleiderer M., Siddell S. G. 1991; Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. Journal of Virology 65:254–262
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  33. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  34. Schultze B., Wahn K., Klenk H. D., Herrler G. 1991a; Isolated HE protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228
    [Google Scholar]
  35. Schultze B., Gross H.-J., Brossmer R., Herrler G. 1991b; The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. Journal of Virology 65:6232–6237
    [Google Scholar]
  36. Scopes G. E., Watt P. J., Lambden P. R. 1990; Identification of a linear epitope on the fusion glycoprotein of respiratory syncytial virus. Journal of General Virology 71:53–59
    [Google Scholar]
  37. Stair E. L., Rhodes M. B., White R. G., Mebus C. A. 1972; Neonatal calf diarrhea: purification and electron microscopy of a coronavirus-like agent. American Journal of Veterinary Research 33:1147–1157
    [Google Scholar]
  38. Storz J., Herrler G., Snodgrass D. R., Hussain K. A., Zhang X. M., Clark M. A., Ron R. 1991; Monoclonal antibodies differentiate between the haemagglutinating and the receptor-destroying activities of bovine coronavirus. Journal of General Virology 72:2817–2820
    [Google Scholar]
  39. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  40. Talbot P. J., Dionne G., Lacroix M. 1988; Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. Journal of Virology 62:3032–3036
    [Google Scholar]
  41. Vautherot J. F., Laporte J., Madelaine M. F., Bobulesco P., Roseto A. 1984; Antigenic and polypeptide structure of bovine enteric coronavirus as defined by monoclonal antibodies. In Molecular Biology and Pathogenesis of Coronavirus pp. 117–131 Edited by Rottier P. J. M., van der Zeijst B. A. M., Spaan W. J. M. New York & London: Plenum Press;
    [Google Scholar]
  42. Vautherot J.-F., Madelaine M.-F., Boireau P., Laporte J. 1992; Bovine coronavirus peplomer glycoproteins: detailed antigenic analyses of S1, S2 and HE. Journal of General Virology 73:1725–1737
    [Google Scholar]
  43. Vlasak R., Luytjes W., Spaan W., Palese P. 1988; Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, U.S.A. 85:4526–4529
    [Google Scholar]
  44. Westhof E., Altschuh D., Moras D., Bloomer A. C., Mondragon A., Klug A., Van Regenmortel M. H. V. 1984; Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature, London 311:123–126
    [Google Scholar]
  45. Yoo D., Parker M. D., Song J., Cox G. J., Deregt D., Babiuk L. A. 1991; Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology 18391–98
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-12-3289
Loading
/content/journal/jgv/10.1099/0022-1317-73-12-3289
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error