1887

Abstract

Two immature T cell lines (FT1 and FT4) were established after cloning of peripheral blood lymphocytes (PBLs) from an asymptomatic human immunodeficiency virus type 1 (HIV-1) seropositive, human T cell-lymphotropic virus type 1 seronegative homosexual subject. Although derived from a limiting dilution cell cloning assay, these cell lines were not recloned for this study. Their growth was independent of exogenous interleukin-2. Both cell lines were able to form colonies when cloned in agar, but failed to form solid tumours when injected into nude mice. FT lines belong to the very immature T cell lineage as they exhibit rearranged TCR genes but no expression of T cell membrane antigens, including CD2, CD3, CD4, CD6, CD7 and CD8. They also contain an HIV-1 genome that was detected only in an extra-chromosomal DNA form, even after several passages . The presence of unintegrated viral DNA was also detected by polymerase chain reaction analysis in the same sample of fresh uncultured PBLs. Furthermore, despite the absence of CD4 expression, both T cell lines were susceptible to CD4-independent HIV-1 superinfection (lack of superinfection inhibition in the presence of OKT4A monoclonal antibodies).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-12-3087
1992-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/12/JV0730123087.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-12-3087&mimeType=html&fmt=ahah

References

  1. Balachandran R., Thampatty P., Enrico A., Rinaldo C., Gupta P. 1991; Human immunodeficiency virus isolates from asymptomatic homosexual men and from AIDS patients have distinct biologic and genetic properties. Virology 180:229–238
    [Google Scholar]
  2. Blumberg R. S., Paradis T., Hartshorn K. L., Vogt M., Ho D. D., Hirsch M. S., Leban J., Sato V. L., Schooley R. T. 1987; Antibody-dependent cell-mediated cytotoxicity against cells infected with the human immunodeficiency vims. Journal of Infectious Diseases 165:878–884
    [Google Scholar]
  3. Brinchmann J. E., Albert J., Vartdal F. 1991; Few infected CD4+ T cells but a high proportion of replication competent pro virus copies in asymptomatic human imunodeficiency vims type 1 infection. Journal of Virology 65:2019–2023
    [Google Scholar]
  4. Care’ A., Pelicci P. G., Meccia E., Fagioli M., Testa U., Ciccone E., Moretta A., Moretta L., Peschle C. 1990; Natural killer cells carry the germline configuration of the T cell receptor δ chain gene and heterogeneously express six distinct δ transcripts. European Journal of Immunology 20:939–942
    [Google Scholar]
  5. Cheng-Mayer C., Rutka J. T., Rosenblum M. L., McHugh T., Stites D. P., Levy J. A. 1987; Human immunodeficiency vims can productively infect cultured human glial cells. Proceedings of the National Academy of Sciences, U.S.A. 84:3526–3530
    [Google Scholar]
  6. Chirgwin J. M., Przybla A. E., Macdonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  7. Clavel F., Hoggan M. D., Willey R. L., Strebel K., Martin M. A., Repaske R. 1989; Genetic recombination of human immunodeficiency virus. Journal of Virology 63:1455–1459
    [Google Scholar]
  8. Dahl K. E., Burrage T., Jones F., Miller G. 1990; Persistent nonproductive infection of Epstein-Barr virus-transformed human B lymphocytes by human immunodeficiency vims type 1. Journal of Virology 64:1771–1783
    [Google Scholar]
  9. Duh E. J., Maury W. J., Folks T. M., Fauci A. S., Rabson A. B. 1989; Tumor necrosis factor a activates human immunodeficiency vims type 1 through induction of nuclear factor binding to the NF-kB sites in the long terminal repeat. Proceedings of the National Academy of Sciences, U.S.A. 86:5974–5978
    [Google Scholar]
  10. Federico M., Titti F., Butto’ S., Orecchia A., Carlini F., Taddeo B., Macchi B., Maggiano N., Verani P., Rossi G. B. 1989; Biologic and molecular characterization of producer and non producer clones from Hut-78 cells infected with a patient HIV isolate. AIDS Research and Human Retroviruses 5:385–396
    [Google Scholar]
  11. Fenyӧ E. M., Albert J., Asjӧ B. 1989; Replicative capacity, cytopathic effect and cell tropism of HIV. AIDS 3:S5–S12
    [Google Scholar]
  12. Fisher A. G., Ensoli B., Looney D., Rose A., Gallo R. C., Saag M. S., Shaw G. M., Hahn B. H., Wong-Staal F. 1988; Biologically diverse molecular variants within a single HIV-1 isolate. Nature, London 334:444–447
    [Google Scholar]
  13. Folks T. M., Powell D. M., Lightfoote M. M., Benn S., Martin M. A., Fauci A. S. 1986; Induction of HTLV-III/LAV from a nonvims-producing T-cell line: implications for latency. Science 231:600–602
    [Google Scholar]
  14. Folks T. M., Kessler S. W., Orenstein J. M., Justement J. S., Jaffe E. S., Fauci A. 1988; Infection and replication of HIV-1 in purified progenitor cells of normal bone marrow. Science 242:919–922
    [Google Scholar]
  15. Friedland G. H., Saltzman B., Vileno J., Freeman K., Schrager L. K., Klein R. 1991; Survival differences in patients with AIDS. Journal of Acquired Immune Deficiency Syndromes 4:144–153
    [Google Scholar]
  16. Hardy A. M. and the Long-Term Survivor Collaborative Study Group 1991; Characterization of long-term survivors of acquired immunodeficiency syndrome. Journal of Acquired Immune Deficiency Syndromes 4:386–391
    [Google Scholar]
  17. Hirsch V. M., Zack M., Johnson P. R. 1990; Molecular characterization of SIV in tissues from experimentally infected macaques. Journal of Medical Primatology 19:287–294
    [Google Scholar]
  18. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  19. Inoue M., Hoxie J. A., Ramana Reddy M. V., Srinivasan A., Premkumar Reddy E. 1991; Mechanisms associated with the generation of biologically active human immunodeficiency virus type 1 particles from defective provimses. Proceedings of the National Academy of Sciences, U.S.A. 88:2278–2282
    [Google Scholar]
  20. Kannagi M., Masuda T., Hattori T., Kanoh T., Nasu K., Yamamoto N., Harada S. 1990; Interference with human immunodeficiency virus (HIV) replication by CD8+ T cells in peripheral blood leukocytes of asymptomatic HIV carriers in vitro . Journal of Virology 64:3399–3406
    [Google Scholar]
  21. Kazazi F., Mathijs J.-M., Foley P., Cunningham A. L. 1989; Variations in CD4 expression by human monocytes and macrophages and their relationship to infection with the human immunodeficiency virus. Journal of General Virology 70:2661–2672
    [Google Scholar]
  22. Kelso A., Gough N. 1987; Expression of hemopoietic growth factor genes in T lymphocytes. In The Lymphokines pp 209–238 Edited by Webb D. R., Goeddel D. V. New York: Academic Press;
    [Google Scholar]
  23. Li X. L., Moudgil T., Vinters H. V., Ho D. D. 1990; CD4- independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1. Journal of Virology 64:1383–1387
    [Google Scholar]
  24. Lusso P., Lori F., Gallo R. C. 1990; CD4-independent infection by human immunodeficiency virus type 1 after phenotypic mixing with human T-cell leukemia viruses. Journal of Virology 64:6341–6344
    [Google Scholar]
  25. Maddon P. J., Littman D. R., Godfrey M., Maddon D. E., Chess L., Axel R. 1985; The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42:93–104
    [Google Scholar]
  26. Matsuyama T., Hamamoto Y., Soma G., Mizuno D., Yamamoto N., Kobayashi N. 1989; Cytocidal effect of tumor necrosis factor on cells chronically infected with human immunodeficiency virus (HIV): enhancement of HIV replication. Journal of Virology 64:2504–2509
    [Google Scholar]
  27. Mosca J. D., Bednarik D. P., Raj N. B. K., Rosen C. A., Sodroski J. G., Haseltine W. A., Pitha P. M. 1987; Herpes simplex virus type-1 can reactivate transcription of latent human immunodeficiency virus. Nature, London 325:67–70
    [Google Scholar]
  28. Mullins J. I., Chen C. S., Hoover E. A. 1986; Disease-specific and tissue-specific production of unintegrated feline leukaemia virus variant DNA in feline AIDS. Nature, London 319:333–336
    [Google Scholar]
  29. Nakajima-Iijima S., Hamada H., Reddy P., Kakunaga T. 1985; Molecular structure of the human cytoplasmic β-actin gene: interspecies homology of sequences in the introns. Proceedings of the National Academy of Sciences, U.S.A. 82:6133–6137
    [Google Scholar]
  30. Pang S., Koyanagi Y., Miles S., Wiley C., Vinters H. V., Chen I. S. Y. 1990; High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature, London 343:85–89
    [Google Scholar]
  31. Pauza C. D., Galindo J. 1989; Persistent human immunodeficiency virus type 1 infection of monoblastoid cells leads to accumulation of self-integrated viral DNA and to production of defective virions. Journal of Virology 63:3700–3707
    [Google Scholar]
  32. Pauza C. D., Singh M. K. 1990; Extrachromosomal HIV-1 DNA in persistently infected U937 cells. AIDS Research and Human Retroviruses 6:1027–1030
    [Google Scholar]
  33. Polack A., Hartl G., Zimber V., Freese U. K., Laux G., Takaki K., Hohn B., Gissmann I., Bornkamm G. W. 1984; A complete set of overlapping clones of M-ABA virus derived from nasopharyngeal carcinoma and its similarity to other Epstein-Barr virus isolates. Gene 27:279–288
    [Google Scholar]
  34. Poli G., Kinter A., Justement J. S., Kehrl J. H., Bressler P., Stanley S., Fauci A. S. 1990; Tumor necrosis factor α functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proceedings of the National Academy of Sciences, U.S.A. 87:782–785
    [Google Scholar]
  35. Ponte P., Ng S.-Y., Engel J., Gunning P., Kedes L. 1984; Evolutionary conservation in the regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Research 12:1678–1696
    [Google Scholar]
  36. Raab-Traub N., Flynn K. 1986; The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889
    [Google Scholar]
  37. Rasty S., Dhruva B. R., Schiltz R. L., Shih D. S., Issel C. J., Montelaro R. C. 1990; Proviral DNA integration and transcriptional patterns of equine infectious anemia virus during persistent and cytopathic infections. Journal of Virology 64:86–95
    [Google Scholar]
  38. Robinson H. C., Zinkus D. M. 1990; Accumulation of human immunodeficiency virus type 1 DNA in T cell: results of multiple infection events. Journal of Virology 64:4836–4841
    [Google Scholar]
  39. Rook A. K., Lane H. C., Folks T., McCoy S., Alter H., Fauci A. S. 1987; Sera from HTLV-III/LAV antibody-positive individuals mediate antibody-dependent cellular cytotoxicity against HTLV-III/LAV-infected T cells. Journal of Immunology 138:1064–1067
    [Google Scholar]
  40. Rossi G. B., Verani P., Macchi B., Federico M., Orecchia A., Nicoletti L., Butto’ S., Lazzarin A., Mariani G., Ippolito G., Manzari V. 1988; Recovery of HIV-related retroviruses from Italian patients with AIDS or AIDS-related complex and from asymptomatic at-risk individuals. Annals of the New York Academy of Science 511:390–400
    [Google Scholar]
  41. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  42. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  43. Sakaguchi M., Sato T., Groopman J. E. 1991; Human immunodeficiency virus infection of megakaryocytic cells. Blood 77:481–485
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Scadden D. T., Zeira M., Schievel L., Ikeuchi K., Lim B., Groopman J. E. 1990; HIV infection of human bone marrow stromal fibroblasts. Blood 76:317–320
    [Google Scholar]
  46. Shaw G. M., Hahn B. H., Arya S. K., Groopman J. E., Gallo R. C., Wong-Staal F. 1984; Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226:1165–1171
    [Google Scholar]
  47. Siekevitz M., Josephs S. F., Dukovich M., Peffer N., Wong-Staal F., Green W. C. 1987; Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-1. Science 238:75–78
    [Google Scholar]
  48. Simmonds P., Balfe P., Peutherer J. F., Ludlman C. A., Bishop J. O., Leigh Brown A. J. 1990; Human immunodeficiency virus- infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. Journal of Virology 64:864–872
    [Google Scholar]
  49. Somasundaran M., Robinson L. 1988; Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection. Science 242:54–57
    [Google Scholar]
  50. Stanton J., Langford M. P., Dianzani F. 1981; Virus yield- reduction assay for interferon by titration of Sindbis virus hemagglutinin. Methods in Enzymology 78:351–357
    [Google Scholar]
  51. Stevenson M., Volsky B., Hedenskog M., Volsky D. J. 1986; Immortalization of human T lymphocytes after transfection of Epstein-Barr virus DNA. Science 233:980–984
    [Google Scholar]
  52. Stevenson M., Stanwick T. L., Dempsey M. P., Lamonica C. A. 1990a; HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO Journal 9:51–60
    [Google Scholar]
  53. Stevenson M., Haggerty S., Lamonica C. A., Meier C. M., Welch S.-K., Wasiak A. J. 1990b; Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. Journal of Virology 64:2421–2425
    [Google Scholar]
  54. Valerie K., Delers A., Bruck C., Thiriart C., Rosenberg H., Debouck C., Rosenberg M. 1988; Activation of human immunodeficiency virus type 1 by DNA damage in human cells. Nature, London 333:78–81
    [Google Scholar]
  55. Von Briesen H., Andreesen R., Rubsamen-Waigmann H. 1990; Systematic classification of HIV biological subtypes on lymphocytes and monocytes/macrophages. Virology 178:597–602
    [Google Scholar]
  56. Wain-Hobson S. 1989; HIV genome variability in vivo . AIDS 3:SI3–S18
    [Google Scholar]
  57. Walker B. D., Chakrabarti S., Moss S., Paradis T. J., Flynn P., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. 1987; HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature, London 328:345–348
    [Google Scholar]
  58. Walker B. D., Flexner C., Paradis T. J., Fuller T. C., Hirsch M. S., Schooley R. T., Moss B. 1988; HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science 240:64–66
    [Google Scholar]
  59. Weber J., Clapham P., McKeating J., Stratton M., Robey E., Weiss R. 1989; Infection of brain cells by diverse human immunodeficiency virus isolates: role of CD4 as receptor. Journal of General Virology 70:2653–2660
    [Google Scholar]
  60. Zack J. A., Cann A. J., Lugo J. P., Chen I. S. Y. 1988; HIV-1 production from infected peripheral blood T cells after HTLV-1 induced mitogenic stimulation. Science 240:1026–1028
    [Google Scholar]
  61. Zucker-Franklin D., Cao Y. 1989; Megakaryocytes of human immunodeficiency virus-infected individuals express viral RNA. Proceedings of the National Academy of Sciences, U.S.A. 86:5595–5599
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-12-3087
Loading
/content/journal/jgv/10.1099/0022-1317-73-12-3087
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error