1887

Abstract

Three monoclonal antibodies (MAbs) obtained from inoculation of mice with either a serotype 1 human rotavirus or rotavirus SA11 (serotype 3) inhibited the transcription of rotavirus SA11. Two of the MAbs exhibited a biphasic inhibitory response. Removal of antibody from MAb preparations by adsorption with Sepharose-Protein G reduced the inhibitory activity completely for all three MAb preparations. Analysis by radioimmunoprecipitation and Western blotting indicated that all three MAbs reacted with VP6. All MAbs also reacted with four group A rotavirus serotypes by ELISA, but did not cross-react with reovirus type 1, poliovirus type 2 or MA-104 cell lysates. Transcription of four rotavirus serotypes as well as epizootic diarrhoea of infant mice rotavirus was inhibited when tested with two of the MAbs. Transcription of both purified single-shelled virus and purified heat-activated double-shelled SA11 rotavirus was inhibited by purified MAb. Our results indicate that these MAbs can be used effectively to study the events associated with rotavirus transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-11-3017
1992-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/11/JV0730113017.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-11-3017&mimeType=html&fmt=ahah

References

  1. Bican P., Cohen J., Charpilienne A., Scherrer R. 1982; Purification and characterization of bovine rotavirus cores. Journal of Virology 43:1113–1117
    [Google Scholar]
  2. Both G. W., Siegman L. J., Bellamy A. R., Ikegami N., Shatkin A. J., Furuichi Y. 1984; Comparative sequence analysis of rotavirus genomic segment 6 – the gene specifying viral subgroups 1 and 2. Journal of Virology 51:97–101
    [Google Scholar]
  3. Boyle J. F., Holmes K. V. 1986; RNA-binding proteins of bovine rotavirus. Journal of Virology 58:561–568
    [Google Scholar]
  4. Clapp L. L., Patton J. T. 1991; Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization. Virology 180:697–708
    [Google Scholar]
  5. Cohen J. 1977; Ribonucleic acid polymerase activity associated with purified calf rotavirus. Journal of General Virology 36:395–402
    [Google Scholar]
  6. Cohen J., Charpilienne A., Chilmonczyk S., Estes M. K. 1989; Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology 171:131–140
    [Google Scholar]
  7. Flores J., Myslinski J., Kalica A. R., Greenberg H. B., Wyatt R. G., Kapikian A. Z., Chanock R. M. 1982; In vitro transcription of two human rotaviruses. Journal of Virology 43:1032–1037
    [Google Scholar]
  8. Gombold J. L., Ramig R. F. 1987; Assignment of simian rotavirus SA11 temperature-sensitive mutant groups A, C, F and G to genome segments. Virology 161:463–473
    [Google Scholar]
  9. Gombold J. L., Estes M. K., Ramig R. F. 1985; Assignment of simian rotavirus SA11 temperature-sensitive mutant groups 3 and E to genome segments. Virology 143:309–320
    [Google Scholar]
  10. Gorziglia M., Hoshino Y., Nishikawa K., Maloy W. L., Jones R. W., Kapikian A. Z., Chanock R. M. 1988; Comparative sequence analysis of the genomic segment 6 of four rotaviruses each with a different subgroup specificity. Journal of General Virology 69:1659–1669
    [Google Scholar]
  11. Greenberg H. B., Valdesuso J., van Wyke K., Midthun K., Walsh M., McAulifee V., Wyatt R. G., Kalica A. R., Flores J., Hoshino Y. 1983; Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of rhesus rotavirus. Journal of Virology 47:267–275
    [Google Scholar]
  12. Hawkes R., Niday E., Gordon J. 1982; A dot-immunobinding assay for monoclonal and other antibodies. Analytical Biochemistry 119:142–147
    [Google Scholar]
  13. Helmberger-Jones M., Patton J. T. 1986; Characterization of subviral particles in cells infected with simian rotavirus SA11. Virology 155:655–665
    [Google Scholar]
  14. Hughes J. H., Thomas D. C., Hamparian V. V. 1973; Acid lability of rhinovirus type 14: effect of pH, time, and temperature. Proceedings of the Society for Experimental Biology and Medicine 144:555–560
    [Google Scholar]
  15. Hughes J. H., Mack K., Hamparian V. V. 1988; India ink staining of proteins on nylon and hydrophobic membranes. Analytical Biochemistry 173:18–25
    [Google Scholar]
  16. Kumar A., Charpilienne A., Cohen J. 1989; Nucleotide sequence of the gene encoding for the RNA binding protein (VP2) of RF bovine rotavirus. Nucleic Acids Research 17:2126
    [Google Scholar]
  17. Labbe M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. 1991; Expression of rotavirus VP2 produces empty corelike particles. Journal of Virology 65:2946–2952
    [Google Scholar]
  18. Liu M., Estes M. K. 1989; Nucleotide sequence of the simian rotavirus SA11 genome segment 3. Nucleic Acids Research 17:7991
    [Google Scholar]
  19. Oi V. T., HerzenberG L. A. 1980; Immunoglobulin-producing hybrid cell lines. In Selected Methods in Cellular Immunology pp. 351–372 Edited by Mishell B. B., Shiigi S. M. New York: Freeman;
    [Google Scholar]
  20. Pizarro J. L., Sandino A. M., Pizarro J. M., Fernandez J., Spencer E. 1991; Characterization of rotavirus guanylyltransferase activity associated with polypeptide VP3. Journal of General Virology 72:325–332
    [Google Scholar]
  21. Powell K. F. H., Harvey J. D., Bellamy A. R. 1984; Reovirus RNA transcriptase: evidence for a conformational change during activation of the core particle. Virology 137:1–8
    [Google Scholar]
  22. Prasad B. V. V., Wang G. J., Clerx J. P. M., Chiu W. 1988; Three-dimensional structure of rotavirus. Journal of Molecular Biology 199:269–275
    [Google Scholar]
  23. Sandino A. M., Jashes M., Faundeq G., Spencer E. 1986; Role of the inner protein capsid on in vitro human rotavirus transcription. Journal of Virology 60:797–802
    [Google Scholar]
  24. Sandino A. M., Pizarro J., Fernandez J., Fellay M. C., Spencer E. 1988; Involvement of structural and nonstructural polypeptides on rotavirus RNA synthesis. Archivos de Biologia y Medicina Experimentales 21:381–392
    [Google Scholar]
  25. Spencer E., Arias M. L. 1981; In vitro transcription catalyzed by heat-treated human rotavirus. Journal of Virology 40:1–10
    [Google Scholar]
  26. Spencer E., Garcia B. I. 1984; Effect of S-adenosylmethionine on human rotavirus RNA synthesis. Journal of Virology 52:188–197
    [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A. 76:4350–4354
    [Google Scholar]
  28. Unanue E. R., Baruj B. 1984 Textbook of Immunology Baltimore: Williams and Wilkins;
    [Google Scholar]
  29. Valenzuela S., Pizarro J., Sandino A. M., Vasquez M., Fernandez J., Hernandez O., Patton J., Spencer E. 1991; Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. Journal of Virology 65:3964–3967
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-11-3017
Loading
/content/journal/jgv/10.1099/0022-1317-73-11-3017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error