1887

Abstract

The early region of bovine polyomavirus (BPyV) was tested for its cell transformation potential employing an assay of dense focus formation. Dense foci of morphologically transformed cells were observed upon transfection of primary rodent cells with a plasmid construct encoding the complete early region of BPyV under the transcriptional control of the long terminal repeat of Rous sarcoma virus. No transformation of primary rodent cells was observed upon transfection of these cells with a plasmid encoding the complete early region of BPyV under the control of its own transcriptional regulatory sequences. In BPyV-transformed cells, the viral sequences had become integrated into the cellular genome, and expression of large T antigen could be detected in a high percentage of cells. The transformed cells were demonstrated to be capable of anchorage-independent growth and to be oncogenic in immunocompromised newborn rats. Therefore BPyV should be considered as a potentially tumorigenic polyomavirus. Since many commercial batches of calf serum have been shown to be contaminated with BPyV, our observations may have implications for the use of calf serum in cell culture.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-11-2871
1992-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/11/JV0730112871.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-11-2871&mimeType=html&fmt=ahah

References

  1. Chen S., Paucha E. 1990; Identification of a region of simian virus 40 large-T antigen required for cell transformation. Journal of Virology 64:3350–3357
    [Google Scholar]
  2. DeCaprio J. A., Ludlow J. W., Figge J., Shew J. Y., Huang C. M., Lee W. H., Marsilio E., Paucha E., Livingston D. M. 1988; SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283
    [Google Scholar]
  3. de Ronde A., Sol C. J. A., MacDonald M., Koot M., ter Schegget J., van Strien A., Wouters E., van der Noordaa J. 1987; Two domains within the early coding region of SV40 involved in the transformation of human fibroblasts. Intervirology 28:221–231
    [Google Scholar]
  4. Dunn S. D. 1986; Effects of the modification of the transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Analytical Biochemistry 157:144–153
    [Google Scholar]
  5. Figge J., Webster T., Smith T. F., Paucha E. 1988; Prediction of similar transforming regions in simian virus 40 large-T, adenovirus E1A And myc-oncoproteins. Journal of Virology 62:1814–1818
    [Google Scholar]
  6. Frost E., Williams J. 1978; Mapping of temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91:39–50
    [Google Scholar]
  7. Gorman M. C., Merlino G. T., Willingham M. C., Pastan I., Howard B. H. 1982; The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proceedings of the National Academy of Sciences, U.S.A. 79:6777–6781
    [Google Scholar]
  8. Gorman C., Padmanabhan R., Howard B. H. 1983; High efficiency DNA-mediated transformation of primate cells. Science 221:551–553
    [Google Scholar]
  9. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  10. Graham R. C. 1965; Cytochemical demonstration of peroxidase activity with 3-amino-9-ethylcarbazole. Journal of Histochemistry and Cytochemistry 13:150–152
    [Google Scholar]
  11. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. 1981; Monoclonal antibodies specific for simian virus 40 tumor antigens. Journal of Virology 39:861–869
    [Google Scholar]
  12. Jat P. S., Sharp P. A. 1986; Large-T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. Journal of Virology 59:746–750
    [Google Scholar]
  13. Kaelin W. G. Jr, Ewen M. E., Livingston D. M. 1990; Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A binding domain in the retinoblastoma gene product. Molecular and Cellular Biology 10:3761–3769
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  15. MacPhearson I., Montagnier L. 1964; Agar suspension culture for the selective assay of cells transformed by polyomavirus. Virology 23:291–294
    [Google Scholar]
  16. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Moran E. 1988; A region of SV40 large-T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature, London 334:168–170
    [Google Scholar]
  18. Parry J. V., Lucas M. H., Richmond J. E., Gardner S. D. 1983; Evidence for a bovine origin of the polyomavirus detected in foetal rhesus kidney cells FRhK-4 and 6. Archives of Virology 78:151–165
    [Google Scholar]
  19. Risser R., Pollack R. 1974; A nonselective analysis of SV40 transformation of mouse 3T3 cells. Virology 59:477–489
    [Google Scholar]
  20. Salzman N. P. (editor) 1986; Papovaviridae. vol 1 The Polyomaviruses New York & London: Plenum Press;
    [Google Scholar]
  21. Schuurman R., Sol C., van der Noordaa J. 1990; The complete nucleotide sequence of bovine polyomavirus. Journal of General Virology 71:1723–1735
    [Google Scholar]
  22. Schuurman R., van Steenis B., van Strien A., van der Noordaa J., Sol C. 1991a; Frequent detection of bovine polyomavirus in commercial batches of calf serum by using the polymerase chain reaction. Journal of General Virology 72:2739–2745
    [Google Scholar]
  23. Schuurman R., van Steenis B., Sol C. 1991b; Bovine polyomavirus, a frequent contaminant of calf serum. Biologicals 19:265–270
    [Google Scholar]
  24. Schuurman R., Jacobs M., van Strien A., van der Noordaa J., Sol C. 1992; Analysis of splice sites in the early region of bovine polyomavirus: evidence for a unique pattern of large T mRNA splicing. Journal of General Virology 73:2879–2886
    [Google Scholar]
  25. Shin S., Freedman V. H., Risser R., Pollack R. 1975; Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro . Proceedings of the National Academy of Sciences, U. S. A. 72:4435–4439
    [Google Scholar]
  26. van Steenis G., van Wezel A. L. 1982; Use of the ATG-treated newborn rat for in vivo tumorigenicity testing of cell substrates. Developments in Biological Standardization 50:37–46
    [Google Scholar]
  27. Villarreal L. P. (editor) 1989 Common Mechanisms of Transformation by Small DNA Tumor Viruses Washington, D. C.: American Society for Microbiology;
    [Google Scholar]
  28. Whyte P., Buchkovski K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. 1988; Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature, London 334:124–129
    [Google Scholar]
  29. Wognum A. W., Sol C. J. A., van der Noordaa J., van Steenis G., Osterhaus A. D. M. E. 1984; Isolation and characterization of a papovavirus from cynomolgus macaque kidney cells. Virology 134:254–257
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-11-2871
Loading
/content/journal/jgv/10.1099/0022-1317-73-11-2871
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error