1887

Abstract

The human cytomegalovirus (HCMV) UL75 gene product is the homologue of herpes simplex virus type 1 (HSV-1) glycoprotein H (gH), a virion glycoprotein that is essential for infectivity and which is conserved among members of the alpha-, beta- and gamma-herpesviruses. It has previously been shown that HSV-1 gH forms a stable complex with HSV-1 gL, the product of the UL1 gene, and the formation of this complex facilitates the cell surface expression of gH. None of the open reading frames within the HCMV genome encode a product with discernible sequence homology with HSV-1 gL, but an examination of the arrangement of conserved genes in HCMV suggested that the UL115 gene is a ‘positional homologue’ of HSV-1 UL1 which, like UL1, encodes a small secreted glycoprotein. Co-expression of HCMV gH (the UL75 gene product) and the UL115 gene product revealed that these proteins form a disulphide-linked complex and that the formation of this complex results in cell surface expression of gH. This complex is analogous to the gH:gL complex of HSV-1 and the HCMV UL115 gene product is therefore the functional homologue of HSV-1 gL.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-10-2693
1992-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/10/JV0730102693.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-10-2693&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Britt W. J. 1984; Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology 135:369–378
    [Google Scholar]
  3. Cai W., Gu B., Person S. 1988; Role of glycoprotein B in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:126–169
    [Google Scholar]
  5. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  6. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson A. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  7. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  8. Foà-Tomasi L., Avitabile E., Boscaro A., Brandimarti R., Gualandri R., Manservigi R., Dall’Olio F., Serafini-Cessi F., Campadelli Fiume G. 1991; Herpes simplex virus (HSV) glycoprotein H is partially processed in a cell line that expresses the glycoprotein and fully processed in cells infected with deletion or ts mutants in the known HSV glycoproteins. Virology 180:474–482
    [Google Scholar]
  9. Forrester A. J., Sullivan V., Simmons A., Blacklaws B. A., Smith G. L., Nash A. A., Minson A. C. 1991; Induction of protective immunity with antibody to herpes simplex virus type 1 glycoprotein H (gH) and analysis of the immune response to gH expressed in recombinant vaccinia virus. Journal of General Virology 72:369–375
    [Google Scholar]
  10. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. 1992; Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. Journal of Virology 66:341–348
    [Google Scholar]
  11. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. Journal of Virology 63:3435–3443
    [Google Scholar]
  12. George D. G., Barker W. C., Hunt L. T. 1986; The protein identification resource (PIR). Nucleic Acids Research 14:11–15
    [Google Scholar]
  13. Gompels U., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  14. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. Journal of Virology 63:4744–4755
    [Google Scholar]
  15. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  16. Gretch D. R., Kari B., Rasmussen L., Gehrz R. C., Stinski M. F. 1988; Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. Journal of Virology 62:875–881
    [Google Scholar]
  17. Heineman T., Gong M., Sample J., Kieff E. 1988; Identification of the Epstein-Barr virus gp85 gene. Journal of Virology 62:1101–1107
    [Google Scholar]
  18. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. Journal of Virology 66:2240–2250
    [Google Scholar]
  19. Kent R. K. 1988; Isolation and analysis of the vaccinia virus P4b gene promoter. Ph.D. Thesis Cambridge University;
    [Google Scholar]
  20. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology 154:367–382
    [Google Scholar]
  21. Leatham M. P., Witte P. M., Stinski M. F. 1991; Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines the late transcripts containing open reading frames for putative viral glycoproteins. Journal of Virology 65:6144–6153
    [Google Scholar]
  22. Little S. P., Schaffer P. A. 1981; Expression of the syncytial (syn) phenotype in HSV-1, strain KOS: genetic and phenotypic studies of mutants in two syn loci. Virology 112:686–697
    [Google Scholar]
  23. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  24. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  25. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: A Practical Approach pp. 191–211 Edited by Glover D. M. New York: Methuen;
    [Google Scholar]
  26. Oram J. D., Downing R. G., Akrigg A., Dollery A. A., Duggleby C. J., Wilkinson G. W. G., Greenaway P. J. 1982; Use of recombinant plasmids to investigate the structure of the human cytomegalovirus genome. Journal of General Virology 59:111–129
    [Google Scholar]
  27. Pachl C., Probert W. S., Hermsen K. M., Masiarz F. R., Rasmussen L., Merigan T. C., Spaete R. R. 1989; The human cytomegalovirus strain Towne glycoprotein H gene encodes glycoprotein p86. Virology 169:418–426
    [Google Scholar]
  28. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, U.S.A. 85:2444–2448
    [Google Scholar]
  29. Rasmussen L., Nelson R., Kelsall D., Merigan T. 1984; Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A. 81:876–880
    [Google Scholar]
  30. Rosel J., Moss B. 1985; Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. Journal of Virology 56:830–838
    [Google Scholar]
  31. Staden R. 1986; The current status and portability of our sequence handing software. Nucleic Acids Research 14:217–231
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-10-2693
Loading
/content/journal/jgv/10.1099/0022-1317-73-10-2693
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error