1887

Abstract

We investigated the possible involvement of oxidative mechanisms in the pathogenesis of influenza A/PR8/34 virus infection in mice. As a biochemical marker of oxidative stress, we determined the endogenous concentrations of the antioxidants glutathione and vitamins C and E in their reduced and oxidized forms in the lungs, liver and blood plasma of control and infected animals. Following intranasal infection with 8 to 10 LD, influenza virus was detected in the lungs, but not in the plasma, liver or other organs. Infection resulted in a decrease in the total concentration of glutathione and vitamins C and E, whereas no relevant change in the ratio of oxidized to total concentration of antioxidants was observed. Changes in the concentration of hepatic antioxidants were significant in the early stages of the infection. The results suggest that hepatic alterations may be caused indirectly by mechanisms related to the host response to virus infection. The observed general decrease in the antioxidant buffering capacity may reduce the ability of tissues to protect against potential oxidative stress. Such stress can occur during bacterial superinfections, which are common in influenza, thereby rendering the host more susceptible to the pathogenic effects of such agents. In addition, reactive oxygen species produced in the lung may inactivate protease inhibitors, resulting in increased protease activity. Using an system consisting of α1-antiprotease, trypsin and HOCl as the oxidant, we have shown that the infectivity of influenza viruses can be increased up to 10000-fold by proteolytic cleavage of haemagglutinin, leading to activation of the fusogenic properties of this protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-1-39
1992-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/1/JV0730010039.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-1-39&mimeType=html&fmt=ahah

References

  1. Adams J. D., Lauterburg B. H., Mitchell J. R. 1983; Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidation stress. Journal of Pharmacology and Experimental Therapeutics 227:749–754
    [Google Scholar]
  2. Arduini A., Mezzetti A., Porreca E., Lapenna D., DeJulia J., Marzio L., Polidoro G., Cuccurello F. 1988; Effect of ischemia and reperfusion on antioxidant enzymes and mitochondrial inner membrane proteins in perfused rat heart. Biochimica et biophysica acta 970:113–121
    [Google Scholar]
  3. Behrens W. A., Madère R. 1987; A highly sensitive high-performance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids, and food. Analytical Biochemistry 165:102–107
    [Google Scholar]
  4. Bergsten P., Amitai G., Kehrl J., Levine M. 1990; Mononuclear leucocytes contain millimolar concentrations of ascorbic acid. Annals of the New York Academy of Sciences 587:275–277
    [Google Scholar]
  5. Bjornson L. K., Kayden H. J., Miller E., Moshell A. N. 1976; The transport of α-tocopherol and β-carotene in human blood. Journal of Lipid Research 17:343–352
    [Google Scholar]
  6. Buhl R., Jaffe H. A., Holroyd K. J., Wells F. B., Mastrangeli A., Saltini C., Cantin A. M., Crystal R. G. 1989; Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet ii:1294–1298
    [Google Scholar]
  7. Chang S.-W., Lauterburg B. H., Voelkel N. F. 1988; Endotoxin causes neutrophil-independent oxidative stress in rats. Journal of Applied Physiology 65:358–367
    [Google Scholar]
  8. Chatterjee I. B., Majumder A. K., Nandi B. K., Subramanian N. 1975; Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences 258:24–47
    [Google Scholar]
  9. Chaves-Carballo E., Carter G. A., Wiebe D. A. 1979; Triglyceride and cholesterol concentrations in whole serum and in serum lipoproteins in Reye’s syndrome. Pediatrics 64:592–597
    [Google Scholar]
  10. Christen S., Peterhans E., Stocker R. 1990; Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proceedings of the National Academy of Sciences, U.S.A 87:2506–2510
    [Google Scholar]
  11. Clark R. A., Stone P. J., El-Hag A., Calore J. D., Franzblau C. 1981; Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils. Journal of Biological Chemistry 256:3348–3353
    [Google Scholar]
  12. Davis L. E., Cole L. L., Lockwood S. J., Kornfeld M. 1983; Experimental influenza B virus toxicity in mice. A possible model for Reye’s syndrome. Laboratory Investigation 48:140–147
    [Google Scholar]
  13. Droege W., Pottmeyer-Gerber C., Schmidt H., Nick S. 1986; Glutathione augments the activation of cytotoxic T lymphocytes in vivo. Immunobiology 172:151–156
    [Google Scholar]
  14. Ellman G. L. 1959; Tissue sulfhydryl groups. Archives of Bio-chemistry and Biophysics 82:70–77
    [Google Scholar]
  15. Frei B., Stocker R., Ames B. N. 1988; Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences, U.S.A 85:9748–9752
    [Google Scholar]
  16. Gresser I., Tovey M., Maury C., Chouroulinkov I. 1975; Lethality of interferon preparations for newborn mice. Nature London 258:76–78
    [Google Scholar]
  17. Griffith O. W., Meister A. 1979; Glutathione: interorgan translocation, turnover, and metabolism. Proceedings of the National Academy of Sciences, U.S.A 76:5606–5610
    [Google Scholar]
  18. Grootveld M., Halliwell B. 1987; Measurement of allantoin and uric acid in human body fluids. Biochemical Journal 243:803–808
    [Google Scholar]
  19. Grunfeld C., Verdier J. A., Neese R., Moser A. H., Feingold K. R. 1988; Mechanism by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo. Journal of Lipid Research 29:1327–1335
    [Google Scholar]
  20. Halliwell B., Gutteridge J. M. C. 1985 Free Radicals in Biology and Medicine Oxford: Clarendon Press;
    [Google Scholar]
  21. Halliwell B., Wasil M., Grootveld M. 1987; Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Letters 213:15–17
    [Google Scholar]
  22. Hatzelmann A., Ullrich V. 1987; Regulation of 5-lipoxygenase activity by the glutathione status in human polymorphonuclear leucocytes. European Journal of Biochemistry 169:175–184
    [Google Scholar]
  23. Imlay J. A., Linn S. 1988; DNA damage and oxygen radical toxicity. Science 240:1302–1309
    [Google Scholar]
  24. Kishimoto T. 1989; The biology of interleukin-6. Blood 74:1–10
    [Google Scholar]
  25. Kutnink M. A., Hawkes W. C., Schaus E. E., Omaye S. T. 1987; An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components. Analytical Biochemistry 166:424–430
    [Google Scholar]
  26. Leibovitz B., Siegel B. V. 1981; Ascorbic acid and the immune response. Advances in Experimental Medicine and Biology 135:1–25
    [Google Scholar]
  27. Leung K. N., Ada G. L. 1980; Cells mediating delayed-type hypersensitivity in the lungs of mice infected with influenza A virus. Scandinavian Journal of Immunology 12:393–400
    [Google Scholar]
  28. Levine M. 1986; Ascorbic acid specifically enhances dopamine β-monooxygenase activity in resting and stimulated chromaffin cells. Journal of Biological Chemistry 261:7347–7356
    [Google Scholar]
  29. Liang C.-M., Lee N., Cattell D., Liang S.-M. 1989; Glutathione regulates interleukin-2 activity on cytotoxic T-cells. Journal of Biological Chemistry 264:13519–13523
    [Google Scholar]
  30. Lozitskii V. P., Fedchuk A. S., Puzis L. E., Buiko V. P., Girlia I. I. 1987; Participation of the proteolysis system in promoting the virulence of the influenza virus and development of the infectious process; the antiviral effect of protease inhibitors. Voprosy Virus-ologii 32:413–419
    [Google Scholar]
  31. Lunec J., Blake D. R. 1985; The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis (RA). Free Radical Research Communications 1:31–39
    [Google Scholar]
  32. Oberg K., Norheim I., Lind E., Alm G., Lundqvist G., Wide L., Jonsdottir B., Magnusson A., Wilander E. 1986; Treatment of malignant carcinoid tumors with human leukocyte interferon: long term results. Cancer Treatment Reports 70:1297–1304
    [Google Scholar]
  33. Oda T., Akaike T., Hamamoto T., Suzuki F., Hirano T., Maeda H. 1989; Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244:974–976
    [Google Scholar]
  34. Pascoe G. A., Duda C. T., Reed D. J. 1987; Determination of α-tocopherol and α-tocopherolquinone in small biological samples by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography 414:440–448
    [Google Scholar]
  35. Peterhans E., Grob M., Bürge T., Zanoni R. 1987; Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radical Research Communications 3:39–46
    [Google Scholar]
  36. Peterhans E., Jungi T. W., Stocker R. 1988; Autotoxicity and reactive oxygen in viral diseases. In UCLA Symposia, New Series: Oxy-radicals in Molecular Biology and Pathology vol 82 pp 543–562 Edited by Cerutti P., Fridovich I., McCord J. New York: Alan R. Liss;
    [Google Scholar]
  37. Peters-Golden M., Shelly C., Morganroth M. L. 1989; Inhibition of rat lung glutathione synthesis attenuates hypoxic pulmonary vasoconstriction and the associated leukotriene C4 production. American Review of Respiratory Diseases 140:1210–1215
    [Google Scholar]
  38. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. American Journal of Hygiene 27:493–497
    [Google Scholar]
  39. Rott R., Klenk H.-D. 1988; The molecular biology of influenza virus pathogenicity. Advances in Virus Research 34:247–281
    [Google Scholar]
  40. Ruben F. L., Michaels R. H. 1975; Reye syndrome with associated influenza A and B infection. Journal of the American Medical Association 234:410–412
    [Google Scholar]
  41. Singh G., Renton K. W., Stebbing N. 1982; Homogeneous interferon from E. coli depresses hepatic cytochrome P-450 and drug biotransformation. Biochemical and Biophysical Research Communications 106:1256–1261
    [Google Scholar]
  42. Sternberger L. A. 1979; The unlabeled antibody peroxidase-antiperoxidase (PAP) method. In Immunochemistry 2nd edn., pp 104–169 New York: John Wiley;
    [Google Scholar]
  43. Stocker R., Hunt N. H., Buffinton G. D., Weidemann M. J., Lewis-Hughes P. H., Clark I. A. 1985; Oxidative stress and protective mechanisms in erythrocytes in relation to Plasmodium vinckei load. Proceedings of the National Academy of Sciences, U.S.A 82:548–551
    [Google Scholar]
  44. Stocker R., Hunt N. H., Weidemann M. J. 1986; Antioxidants in plasma from mice infected with Plasmodium vinckei. Biochemical and Biophysical Research Communications 134:152–158
    [Google Scholar]
  45. Sugino K., Dohi K., Yamada K., Kawasaki T. 1987; The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101:746–752
    [Google Scholar]
  46. Sugino K., Dohi K., Yamada K., Kawasaki T. 1988; Changes in the levels of endogenous antioxidants in the liver of mice with Experimental endotoxemia and the protective effects of the antioxidants. Surgery 105:200–206
    [Google Scholar]
  47. Suzuki F., Ohya J., Ishida N. 1974; Effect of antilymphocyte serum in influenza virus infection. Proceedings of the Society for Experimental Biology and Medicine 146:78–84
    [Google Scholar]
  48. Tashiro M., Ciborowski P., Klenk H. D., Pulverer G., Rott R. 1987; Role of staphylococcus protease in the development of influenza pneumonia. Nature, London 325:536–537
    [Google Scholar]
  49. Wayne D. D. M., Burton G. W., Ingold K. U., Locke S. J. 1985; Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Letters 187:33–37
    [Google Scholar]
  50. Weiss S. J. 1989; Tissue destruction by neutrophils. New England Journal of Medicine 320:365–376
    [Google Scholar]
  51. Wyde P. R., Cate T. R. 1978; Cellular changes in lungs of mice infected with influenza virus: characterization of the cytotoxic response. Infection and Immunity 22:423–429
    [Google Scholar]
  52. Yamamoto Y., Brodsky M. H., Baker J. C., Ames B. N. 1987; Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Analytical Biochemistry 160:7–13
    [Google Scholar]
  53. Yap K. L., Ada G. L. 1978; Cytotoxic T cells in the lungs of mice infected with an influenza A virus. Scandinavian Journal of Immunology 7:73–80
    [Google Scholar]
  54. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1984; Suppression of influenza virus replication in infected mice by protease inhibitors. Journal of General Virology 65:191–196
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-1-39
Loading
/content/journal/jgv/10.1099/0022-1317-73-1-39
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error