1887

Abstract

The kinetics of fusion of influenza virus (A/PR/8/34) with human promyelocytic leukaemia (HL-60), human T lymphocytic leukaemia (CEM) and murine lymphoma (S49) cells were investigated. Fusion was demonstrated by electron microscopy, and monitored by fluorescence dequenching of octadecylrhodamine incorporated in the virus membrane. Rapid fusion was induced upon mild acidification of the medium. At pH 5, all virus particles were capable of fusing with the cells. The initial rate and the extent of fusion were maximal between pH 4.9 and 5.2 and declined sharply below and above this range. The rate constants of adhesion of influenza virus to cells or erythrocyte ghosts were large, indicating a diffusion-controlled process. The rate constants of fusion of the virus with cells were smaller than those found previously for fusion with various liposomes. Although preincubation of the virus at acidic pH in the absence of target membranes almost completely inactivated the virus in its ability to fuse with erythrocyte ghosts, it reduced the extent of fusion with cultured cells by only 20 to 40%. Kinetic analysis of fusion revealed a mode of inactivation of the virus bound to erythrocyte ghosts or suspension cells, below pH 5.4, different from that of the virus preincubated at low pH without target membranes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-1-27
1992-01-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/1/JV0730010027.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-1-27&mimeType=html&fmt=ahah

References

  1. Amselem S., Barenholz Y., Loyter A., Nir S., Lichtenberg D. 1986; Fusion of Sendai virus with negatively charged liposomes as studied by pyrene-labelled phospholipid liposomes. Biochimica et biophysica acta 860:301–313
    [Google Scholar]
  2. Asano A., Asano K. 1984; Molecular mechanism of virus entry to target cells. Tumor Research 19:1–20
    [Google Scholar]
  3. Berg O. G., von Hippel P. H. 1985; Diffusion-controlled macromolecular interactions. Annual Review of Biophysical Chemistry 14:131–160
    [Google Scholar]
  4. Blumenthal R., Bali-Puri A., Walter A., Covell D., Eidelman O. 1987; pH-dependent fusion of vesicular stomatitis virus with Vero cells. Journal of Biological Chemistry 26213614–13619
    [Google Scholar]
  5. Düzgüneș N., Bentz J. 1988; Fluorescence assays for membrane fusion. In Spectroscopic Membrane Probes vol 1 pp 117–159 Edited by Loew L. M. Boca Raton: CRC Press;
    [Google Scholar]
  6. Düzgüneș N., Gambale F. 1988; Membrane action of synthetic peptides from influenza virus hemagglutinin and its mutants. FEBS Utters 227:110–114
    [Google Scholar]
  7. Düzgüneș N., Pedroso de Lima M., Stamatatos L., Flasher D., Friend D. S., Alford D., Klappe K., Hoekstra D., Nir S. 1991a; Fusion of influenza and Sendai viruses with cultured cells. Biophysical Journal 59:206a
    [Google Scholar]
  8. Düzgüneș N., Pedroso de Lima M. C., Larsen C., Stamatatos L., Flasher D., Alford D. R., Friend D. S., Nir S. 1991b; Kinetics of fusion of influenza, Sendai and immunodeficiency viruses with target membranes. In Cell and Model Membrane Interactions Edited by Ohki S. New York: Plenum Press; (in press)
    [Google Scholar]
  9. Hoekstra D., Klappe K. 1986; Sendai virus-erythrocyte membrane interaction: quantitative and kinetic analysis of viral binding, dissociation and fusion. Journal of Virology 58:87–95
    [Google Scholar]
  10. Hoekstra D., Kok J. W. 1989; Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes.. Bio-science Reports 9:273–305
    [Google Scholar]
  11. Hoekstra D., de Boer T., Klappe K., Wilschut J. 1984; Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681
    [Google Scholar]
  12. Hoekstra D., Klappe K., de Boer T., Wilschut J. 1985; Characterization of the fusogenic properties of Sendai virus: kinetics of fusion with erythrocyte membranes. Biochemistry 24:4739–4745
    [Google Scholar]
  13. Junankar P. R., Cherry R. J. 1986; Temperature and pH dependence of the haemolytic activity of influenza virus and of the rotational mobility of the spike glycoproteins. Biochimica et biophysica acta 854:198–206
    [Google Scholar]
  14. Loyter A., Citovsky V., Blumenthal R. 1988; The use of fluorescence dequenching measurements to follow viral membrane fusion events. In Methods of Biochemical Analysis vol 33 pp 129–164 Edited by Glick D. New York: John Wiley & Sons;
    [Google Scholar]
  15. Marsh M., Helenius A. 1989; Virus entry into animal cells. Advances in Virus Research 36:107–151
    [Google Scholar]
  16. Matlin K., Reggio H., Helenius A., Simons K. 1981; The infective entry of influenza virus into MDCK cells. Journal of Cell Biology 91:601–613
    [Google Scholar]
  17. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology 62:2366–2372
    [Google Scholar]
  18. Nir S. 1992; Analysis of kinetics and extent of fusion of viruses with target membranes. Methods in Enzymology (in press)
    [Google Scholar]
  19. Nir S., Bentz J., Wilschut J., Düzgüneș N. 1983; Aggregation and fusion of phospholipid vesicles. Progress in Surface Science 13:1–124
    [Google Scholar]
  20. Nir S., Stegmann T., Wilschut J. 1986a; Fusion of influenza virus with cardiolipin liposomes at low pH: mass action analysis of kinetics and fusion. Biochemistry 25:257–266
    [Google Scholar]
  21. Nir S., Klappe K., Hoekstra D. 1986b; Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: application of a mass action kinetic model. Biochemistry 25:2155–2161
    [Google Scholar]
  22. Nir S., Klappe K., Hoekstra D. 1986c; Mass action analysis of kinetics and extent of fusion between Sendai virus and liposomes. Biochemistry 25:8261–8266
    [Google Scholar]
  23. Nir S., Stegmann T., Hoekstra D., Wilschut J. 1988; Kinetics and extent of fusion of influenza virus and Sendai virus with liposomes. In Molecular Mechanisms of Membrane Fusion pp 451–465 Edited by Ohki S., Doyle D., Flanagan T. D., Hui S. W., Mayhew E. New York: Plenum Press;
    [Google Scholar]
  24. Nir S., Düzgüneș N., Pedroso de Lima M. C., Hoekstra D. 1990; Fusion of enveloped viruses with cells and liposomes: activation and inactivation. Cell Biophysics 17:181–201
    [Google Scholar]
  25. Nussbaum O., Loyter A. 1987; Quantitative determination of virus-membrane fusion events. Fusion of influenza virions with plasma membranes and membranes of endocytic vesicles in living cultured cells. FEBS Letters 221:61–67
    [Google Scholar]
  26. Ohnishi S. I. 1988; Fusion of viral envelopes with cellular membranes. In Membrane Fusion in Fertilization, Cellular Transport and Viral Infection pp 257–296 Edited by Düzgüneș N., Bronner F. San Diego: Academic Press;
    [Google Scholar]
  27. Pedroso De Lima M. C., Nir S., Flasher D., Klappe K., Hoekstra D., Düzgüneș N. 1991; Fusion of Sendai virus with human HL-60 and OEM cells: different kinetics of fusion for two isolates. Biochimica et biophysica acta (in press)
    [Google Scholar]
  28. Puri A., Booy F. P., Doms R. W., White J. M., Blumenthal R. 1990; Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. Journal of Virology 64:3824–3832
    [Google Scholar]
  29. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus hemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  30. Sato S. B., Kawasaki K., Ohnishi S. I. 1983; Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proceedings of the National Academy of Sciences, U.S.A 80:3153–3157
    [Google Scholar]
  31. Sinangil F., Loyter A., Volsky D. J. 1988; Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching. FEBS Letters 239:88–92
    [Google Scholar]
  32. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza hemagglutinin at the pH optimum of virus mediated membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 79:968–972
    [Google Scholar]
  33. Smoluchowski M. 1917; Investigation into the mathematical theory of the kinetics of coagulation of colloidal solutions. Zeitschrift für physikalishe Chemie 92:129–168
    [Google Scholar]
  34. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1985; Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24:3107–3113
    [Google Scholar]
  35. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1986; Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. Journal of Biological Chemistry 261:10966–10969
    [Google Scholar]
  36. Stegmann T., Morselt H. W. M., Scholma J., Wilschut J. 1987a; Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochimica et biophysica acta 904:165–170
    [Google Scholar]
  37. Stegmann T., Booy F. P., Wilschut J. 1987b; Effects of low pH on influenza virus. Activation and inactivation of the membrane fusion capacity of the hemagglutinin. Journal of Biological Chemistry 262:17744–17749
    [Google Scholar]
  38. Stegmann T., Nir S., Wilschut J. 1989; Membrane fusion activity of influenza virus. Effects of gangliosides and negatively charged phospholipids in target liposomes. Biochemistry 28:1698–1704
    [Google Scholar]
  39. White J., Matlin K., Helenius A. 1981; Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses. Journal of Cell Biology 89:674–679
    [Google Scholar]
  40. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  41. Yoshimura A., Kuroda K., Kawasaki K., Yamashina S., Maeda T., Ohnishi S. 1982; Infectious entry mechanism of influenza virus. Journal of Virology 43:284–293
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-1-27
Loading
/content/journal/jgv/10.1099/0022-1317-73-1-27
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error