1887

Abstract

Using purified bacterially expressed herpes simplex virus type 1 ribonucleotide reductase large subunit (R1) and the proteolytic enzymes chymotrypsin and trypsin, we have generated stable N-terminal truncations. Chymotrypsin removes 246 amino acids from the amino terminus to produce a fragment (dN246R1) which retains full enzymic activity and affinity for the small subunit (R2). Treatment of R1 with trypsin produces a 120K protein and a cleavage at amino acid residue 305 to produce a fragment (dN305R1) which remains associated with a 33K N-terminal polypeptide. Although this 33K-dN305R1 complex retains full binding affinity for R2 its reductase activity is reduced by approximately 50%. Increasing the concentration of trypsin removes the 33K N-terminal polypeptide resulting in dN305R1 which, when bound to R2, has full ribonucleotide reductase activity. Like R1, dN246R1 and dN305R1 each exist as dimers showing that the first 305 amino acids of R1 are not necessary for dimer formation. These results indicate that, in structural studies of subunit interaction, dN246R1 or dN305R1 can be considered as suitable replacements for intact R1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-1-103
1992-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/1/JV0730010103.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-1-103&mimeType=html&fmt=ahah

References

  1. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; The polyamide method of solid phase peptide and oligonucleotide synthesis. Rioorganic Chemistry 8:351–370
    [Google Scholar]
  2. Bacchetti S., Evelegh M. J., Muirhead B. 1986; Identification and separation of the two subunits of herpes simplex virus ribonucleotide reductase. Journal of Virology 57:1177–1181
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatful G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequences and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  4. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan M. D., Subak–Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and is a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  5. Carlson J., Fuchs J. A., Messing J. 1984; Primary structure of the Escherichia coli ribonucleotide diphosphate reductase operon. Proceedings of the National Academy of Sciences, U.S.A 81:4294–4297
    [Google Scholar]
  6. Chung T. D., Wymer J. P., Smith C. C., Kulka M., Aurelian L. 1989; Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Journal of Virology 63:3389–3398
    [Google Scholar]
  7. Chung T. D., Wymer J. P., Kulka M., Smith C. C., Aurelian L. 1990; Myristylation and polylysine mediated activation of the protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 179:168–178
    [Google Scholar]
  8. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpes virus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature, London 321:441–443
    [Google Scholar]
  9. Cohen E. A., Paradis H., Gaudreau P., Brazeau P., Langelier Y. 1987; Identificaton of viral polypeptides involved in pseudorabies virus ribonucleotide reductase activity. Journal of Virology 61:2046–2049
    [Google Scholar]
  10. Cohen G. H. 1972; Ribonucleotide reductase activity of synchronised KB cells infected with herpes simplex virus. Journal of Virology 9:408–418
    [Google Scholar]
  11. Cohen G. H., Facto M. W., Ponce de Leon M. 1974; Inhibition of herpes simplex virus type 2 replication by thymidine. Journal of Virology 14:20–25
    [Google Scholar]
  12. Cohen J. C., Henry B. E., Randell C. C., O’Callaghan D. J. 1977; Ribonucleotide reductase activity in hydroxyurea resistant herpes virus replication. Proceedings of the Society for Experimental Biology and Medicine 155:395–399
    [Google Scholar]
  13. Darling A. J., Dutia B. M., Marsden H. S. 1987; Improved method for the measurement of ribonucleotide reductase activity. Journal of Virological Methods 180:281–290
    [Google Scholar]
  14. Darling A. J., MacKay E. M., Ingemarson R., Preston V. G. 1988; Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits. Virus Genes 2:163–176
    [Google Scholar]
  15. Darling A. J., MacKay E. M., Ingemarson R. 1990; Herpes simples virus encoded ribonucleotide reductase: evidence for the dissociation/reassociation of theholoenzyme. Virus Genes 3:367372
    [Google Scholar]
  16. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella–zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  17. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus–specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  18. Dutia B. M., Frame M. C., Subak–Sharpe J. H., Clark W. N., Marsden H. S. 1986; Specific inhibition of herpes virus ribonucleotide reductase by synthetic peptides. Nature, Ixtndon 321:439–441
    [Google Scholar]
  19. Eriksson S., Sjoberg B.-M. 1989; Ribonucleotide reductase. In Allosteric Enzymes pp 189–217 Edited by Herve G. Boca Raton: CRC Press;
    [Google Scholar]
  20. Frame M. C., Marsden H. S., Dutia B. M. 1985; The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). Journal of General Virology 66:1581–1587
    [Google Scholar]
  21. Furlong J., Conner J., McLauchlan J., Lankinen H., Galt C., Marsden H. S., Clements J. B. 1991; The large subunit of herpes simplex virus type 1 ribonucleotide reductase: expression in Escherichia coli and purification. Virology 182:846–851
    [Google Scholar]
  22. Gaudreau P., Michaud J., Cohen E. A., Langelier Y., Brazeau P. 1987; Structure activity studies on synthetic peptides inhibiting HSV ribonucleotide reductase. Journal of Biological Chemistry 262:12413–12416
    [Google Scholar]
  23. Gibson T., Stockwell P., Ginsberg M., Barrell B. 1984; Homology between two EBV eaR1y genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  24. Goldstein D. J., Weller S. K. 1988a; Herpes simplex virus type 1 ribonucleotide reductase activity is dispensible for growth and DNA synthesis: isolation and characterisation of an ICP6 lacZ insertion mutation. Journal of Virology 62:196–205
    [Google Scholar]
  25. Goldstein D. J., Weller S. K. 1988b; Factor(s) present in the herpes simplex virus type 1 infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterisation of an ICP6 deletion mutant. Virology 166:41–51
    [Google Scholar]
  26. Henry B. E., Glaser R., Hewetson J., O’Callaghan D. J. 1978; Expression of altered ribonucleotide reductase activity associated with the replication of the Epstein–Barr virus. Virology 89:262–271
    [Google Scholar]
  27. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type a, /i2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Virology 156:417–422
    [Google Scholar]
  28. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 277:680685
    [Google Scholar]
  30. Lankinen H., Graslund A., Thelander L. 1982; Induction of a new ribonucleotide reductase after infection of L cells with pseudorabies virus. Journal of Virology 41:893–900
    [Google Scholar]
  31. Lankinen H., Telford E., MacDonald D., Marsden H. 1989; The unique N–terminal domain of the large subunit of herpes simplex virus ribonucleotide reductase is preferentially sensitive to proteolysis. Journal of General Virology 70:3159–3169
    [Google Scholar]
  32. Lankinen H., McLauchlan J., Weir M., Furlong J., Conner J., McGarrity A., Mistry A., Clements J. B., Marsden H. S. 1989; Purification and characterization of the herpes simplex virus type 1 ribonucleotide reductase small subunit following expression in Escherichia coli. Journal of General Virology 72:1383–1392
    [Google Scholar]
  33. McClements W., Yamanaka G., Garsky V., Perry H., Bacchetti S., Colonno R., Stein R. B. 1988; Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162:270–273
    [Google Scholar]
  34. Nikas I., McLauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotide reductase. Protein Structure Function and Genetics 1:376–384
    [Google Scholar]
  35. Paradis H., Gaudreau P., Brazeau P., Langelier Y. 1988; Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxy– terminus of its subunit 2.. Journal of Biological Chemistry 263:1604516050
    [Google Scholar]
  36. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  37. Preston V. G., Darling A. J., McDougall I. 1988; The herpes simplex virus type 1 temperature sensitive mutant Ml 222 has a single base pair deletion in the small subunit of ribonucleotide reductase. Virology 167:458–467
    [Google Scholar]
  38. Reichard P. 1988; Interactions between deoxyribonucleotide and DNA synthesis. Annual Review of Biochemistry 57:349–374
    [Google Scholar]
  39. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  40. Spector T., Stonehuerner J. G., Biron K. K., Averett E. R. 1987; Ribonucleotide reductase induced by varicella zoster virus. Characterisation and potentiation of acyclovir by its inhibition. Biochemical Pharmacology 36:4341–4346
    [Google Scholar]
  41. Telford E., Lankinen H., Marsden H. 1990; Inhibition of equine herpesvirus type 1 subtype 1–induced ribonucleotide reductase by the nonapeptide YAGAVVNDL. Journal of General Virology 71:1373–1378
    [Google Scholar]
  42. Thelander L., Reichard P. 1979; Reduction of ribonucleotides. Annual Review of Biochemistry 48:133–158
    [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A 76:4350–4354
    [Google Scholar]
  44. Wymer J. P., Chung T. D., Chang Y., Hayward G. S., Aurelian L. 1989; Identification of immediate eaR1y type cis-response elements in the promoter of the ribonucleotide reductase large subunit from herpes simplex virus type 2. Journal of Virology 63:2773–2784
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-1-103
Loading
/content/journal/jgv/10.1099/0022-1317-73-1-103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error