1887

Abstract

The complete nucleotide sequence of the large (L) genome segment of tomato spotted wilt virus (TSWV) has been determined. The RNA is 8897 nucleotides long and contains complementary 3′ and 5′ ends, comprising 62 nucleotides at the 5′ end and 66 nucleotides at the 3′ end. The RNA is of negative polarity, with one large open reading frame (ORF) located on the viral complementary strand. This ORF corresponds to a primary translation product of 2875 amino acids in length, with a predicted of 331500. Comparison with the polymerase proteins of other negative-strand viruses indicates that this protein most likely represents the viral polymerase. The genetic organization of TSWV L RNA is similar to that of the L RNA segments of Bunyamwera and Hantaan viruses, animal-infecting representatives of the Bunyaviridae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-9-2207
1991-09-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/9/JV0720092207.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-9-2207&mimeType=html&fmt=ahah

References

  1. Auperin D. D., Compans R. W., Bishop D. H. L. 1982; Nucleotide sequence conservation at the 3ʹ termini of the virion RNA species of New world and Old world arenaviruses. Virology 121:200–203
    [Google Scholar]
  2. Braam J., Ulmanen I., Krug R. M. 1983; Molecular model of a eukaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34:609–618
    [Google Scholar]
  3. Candresse T., Morch M. D., Dunez J. 1990; Multiple alignment and hierarchical clustering of conserved amino acid sequences in the replication-associated proteins of plant RNA viruses. Research in Virology 141:315–329
    [Google Scholar]
  4. Clerx J. P. M., Fuller F., Bishop D. H. L. 1983; Tick-borne viruses structurally similar to Orthomyxoviruses. Virology 127:205–219
    [Google Scholar]
  5. Clerx-van Haaster C. M., Clerx J. P. M., Ushijima H., Akashi H., Fuller F., Bishop D. H. L. 1982; The 3ʹ terminal RNA sequences of bunyaviruses and nairoviruses (Bunyaviridae): evidence of end sequence generic differences within the virus family. Journal of General Virology 61:289–292
    [Google Scholar]
  6. De Haan P., Wagemakers L., Goldbach R., Peters D. 1989a; Tomato spotted wilt virus, a new member of the Bunyaviridae?. In Genetics and Pathogenicity of Negative Strand Viruses pp 287–290 Edited by Kolakofsky D., Mahy B. W. J. Amsterdam: Elsevier;
    [Google Scholar]
  7. De Haan P., Wagemakers L., Peters D., Goldbach R. 1989b; Molecular cloning and terminal sequence determination of the S and M RNA of tomato spotted wilt virus. Journal of General Virology 70:3469–3473
    [Google Scholar]
  8. De Haan P., Wagemakers L., Peters D., Goldbach R. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense characcharacter. Journal of General Virology 71:1001–1007
    [Google Scholar]
  9. Desselberger U., Racaniello V. R., Zazra J. J., Palese P. 1980; The 3ʹ- and 5ʹ-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8:315–328
    [Google Scholar]
  10. Devos R. G. E., Gillis E., Fiers W. 1976; The enzymatic addition of poly(A) to the 3ʹ end of RNA using bacteriophage MS2 RNA as a model system. European Journal of Biochemistry 62:401–410
    [Google Scholar]
  11. Elliott R. M. 1989; Nucleotide sequence analysis of the large genomic RNA segment of Bunyamwera virus, the prototype of the family Bunyaviridae. Virology 173:426–436
    [Google Scholar]
  12. Elliott R. M. 1990; Molecular biology of the Bunyaviridae. Journal of General Virology 71:501–522
    [Google Scholar]
  13. Giorgi C., Accardi L., Nicoletti L., Gro M. C., Takehara K., Hilditch C., Morikawa S., Bishop D. H. L. 1991; Sequences and coding strategies of the S RN As of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. Virology 180:738–753
    [Google Scholar]
  14. Goldbach R. 1986; Molecular evolution of plant RNA viruses. Annual Review of Phytopathology 24:289–310
    [Google Scholar]
  15. Goldbach R. W. 1987; Genome similarities between plant and animal RNA viruses. Microbiological Sciences 4:197–202
    [Google Scholar]
  16. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–1730
    [Google Scholar]
  17. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  18. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature, London 335:22–23
    [Google Scholar]
  19. Ie T. S. 1970; Tomato spotted wilt virus. CMI/AAB Descriptions of Plant Viruses no. 39
    [Google Scholar]
  20. Ihara T., Akashi H., Bishop D. H. L. 1984; Novel coding strategy (ambisense genomic RNA) revealed by sequence analysis of Punta Toro phlebovirus S RNA. Virology 136:293–306
    [Google Scholar]
  21. Ihara T., Smith J., Dalrymple J. M., Bishop D. H. L. 1985; Complete sequences of the glycoproteins and M RN A of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Virology 144:246–259
    [Google Scholar]
  22. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  23. Krug R. M., Alonso-Caplen F. V., Julkunen I., Katze M. G. 1989; Expression and replication of the influenza virus genome. In The Influenza Viruses pp 89–152 Edited by Krug R. M. New York: Plenum Press;
    [Google Scholar]
  24. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydrophobic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–199
    [Google Scholar]
  27. Mohamed N. A. 1981; Isolation and characterization of subviral structures from tomato spotted wilt virus. Journal of General Virology 53:197–206
    [Google Scholar]
  28. Mohamed N. A., Randles J. W., Francki R. I. B. 1973; Protein composition of tomato spotted wilt virus. Virology 56:12–21
    [Google Scholar]
  29. Parvin J. D., Palese P., Honda A., Ishihama A., Krystal M. 1989; Promoter analysis of influenza virus RNA polymerase. Journal of Virology 63:5142–5152
    [Google Scholar]
  30. Peters D., De Avila A. C., Kitajima E. W., De O. Resende R., de Haan P., Goldbach R. 1991; An overview of tomato spotted wilt virus. Proceedings TSWW Workshop, Beltsville, U,. S,. A (in press)
    [Google Scholar]
  31. Peters D., De Avila A. C., Kitajima E. W., De O. Resende R., de Haan P., Goldbach R. 1991; An overview of tomato spotted wilt virus. In Virus-Thrips-Plant Interactions of TSWV, Proceedings of USD A Workshop, Beltsville U. S. A. pp 1–14 Edited by Hsu H. T., Lawson R. H. Springfield: National Technology Information Service;
    [Google Scholar]
  32. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  33. Raju R., Kolakofsky D. 1989; The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base-paired. Journal of Virology 63:122–128
    [Google Scholar]
  34. Ronnhoi M. R., Pettersson R. F. 1987; Complete nucleotide sequence of the M RNA segment of Uukuniemi virus encoding the membrane glycoproteins G1 and G2. Virology 160:191–202
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  36. Schmaljohn C. S. 1990; Nucleotide sequence of the L genome segment of Hantaan virus. Nucleic Acids Research 18:6728
    [Google Scholar]
  37. Schmaljohn C. S., Jennings G. B., Hay J., Dalrymple J. M. 1986; Coding strategy of the S genome segment of Hantaan virus. Virology 155:633–643
    [Google Scholar]
  38. Schmaljohn C. S., Schmaljohn A. L., Dalrymple J. M. 1987; Hantaan virus M RNA: coding strategy, nucleotide sequence, and gene order. Virology 157:31–39
    [Google Scholar]
  39. Simons J. F., Hellman U., Pettersson R. F. 1990; Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus. Journal of Virology 64:247–255
    [Google Scholar]
  40. Staunton D., Nuttall P. A., Bishop D. H. L. 1989; Sequence analysis of Thogoto viral RNA segment 3: evidence for a distant relationship between an arbovirus and members of the Orthomyxo-viridae. Journal of General Virology 70:2811–2817
    [Google Scholar]
  41. Strauss J. H., Strauss E. G. 1988; Evolution of RNA viruses. Annual Review of Microbiology 42:657–683
    [Google Scholar]
  42. Tas P. W. L., Boerjan M. L., Peters D. 1977; The structural proteins of tomato spotted wilt virus. Journal of General Virology 36:276–279
    [Google Scholar]
  43. Van den Hurk J., Tas P. W. L., Peters D. 1977; The ribonucleic acid of tomato spotted wilt virus. Journal of General Virology 36:81–91
    [Google Scholar]
  44. Yamashita M., Krystal M., Palese P. 1989; Comparison of the three large polymerase proteins of influenza A, B and C viruses. Virology 171:458–466
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  46. Zhang H., Scholl R., Browse J., Somerville C. 1988; Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16:1220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-9-2207
Loading
/content/journal/jgv/10.1099/0022-1317-72-9-2207
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error