Inhibition of vesicular stomatitis virus (VSV) replication in L cells by interferon (IFN) resembles the action of IFN on some retroviruses, in that the incorporation of glycoprotein into virions is defective. Primary amines added between 1 and 2 h post-infection significantly enhanced (five- to 1000-fold) the antiviral activity of IFN against VSV, but no enhancement of the antiviral activity of IFN against encephalomyocarditis virus, a virus with no membrane component, by primary amines was seen. SDS-PAGE and immunofluorescence analysis of viral proteins, and Nycodenz gradient fractionation, suggested that both IFN and primary amines inhibited the transport of VSV glycoprotein (G) to the plasma membrane; instead, G accumulated in the trans-Golgi network (TGN). Using sensitive intracellular pH (pHi) indicators, we found that IFN treatment significantly raised the pHi. A further increase in pHi was seen with a combination of IFN and primary amines; the increase in pHi correlated with an enhancement of the antiviral activity of IFN by primary amines. Amiloride inhibited the IFN-induced increase in pHi and a concomitant increase in the concentration of Na ions; this observation suggested that IFN induced cytoplasmic alkalinization by activating an Na/H antiporter system. These results indicated that the IFN-induced increase in pHi may be responsible for the accumulation of G in the TGN, thereby producing G-deficient virus particles with reduced infectivity.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error