1887

Abstract

Herpes simplex virus glycoprotein B (HSVgB) and its bovine herpesvirus homologue (BHVgB) share similar primary structures. These glycoproteins are present in the envelope of the virion and are believed to initiate infection by fusing the virus envelope with a host cell membrane. BHVgB, like the membrane-fusing glycoproteins of most enveloped viruses, is normally cleaved and is present as a disulphide-linked complex in the virus envelope and host cell membranes. HSVgB, however, remains uncleaved, presumably because it lacks a similar protease recognition sequence. To determine whether the cleavage of BHVgB is essential for its role in initiating infection, we altered the coding sequence of this glycoprotein by removing the protease cleavage site and making this region similar to that of HSVgB. The mutant BHVgB gene was expressed by an HSV recombinant virus in mouse L cells and produced an uncleaved BHVgB. The uncleaved BHVgB could complement the function of HSVgB which had been neutralized by monoclonal antibody H233. When expressed in mouse L cells, the uncleaved mutant BHVgB retained its ability to fuse membranes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-9-2083
1991-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/9/JV0720092083.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-9-2083&mimeType=html&fmt=ahah

References

  1. Albrecht J.-C., Fleckenstein B. 1990; Structural organization of the conserved gene block of Herpesvirus saimiri coding for DNA polymerase, glycoprotein B, and major DNA binding protein. Virology 174:533–542
    [Google Scholar]
  2. Ali M. A., Butcher M., Ghosh H. P. 1987; Expression and nuclear envelope localization of biologically active fusion glycoprotein gB of herpes simplex virus in mammalian cells using cloned DNA. Proceedings of the National Academy of Sciences, U.S.A. 84:5675–5679
    [Google Scholar]
  3. Alkhatib G., Richardson C., Shen S. -H. 1990; Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virology 175:262–270
    [Google Scholar]
  4. Bosch F. X., Orlick M., Klenk H. -D., Rott R. 1979; The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95:197–207
    [Google Scholar]
  5. Bosch V., Pawlita M. 1990; Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site. Journal of Virology 64:2337–2344
    [Google Scholar]
  6. Bzik D. J., Fox B. A., DeLuca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  7. Cai W., Gu B., Person S. 1988a; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  8. Cai W., Person S., Debroy C., Gu B. 1988b; Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. Journal of Molecular Biology 201:575–588
    [Google Scholar]
  9. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  10. DeLuca N., Bzik D. J., Bond V. B., Person S., Snipes W. 1982; Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7). Virology 122:411–423
    [Google Scholar]
  11. Dente L., Cesareni G., Cortese R. 1983; pEMBL: a new family of single stranded plasmids. Nucleic Acids Research 11:1645–1655
    [Google Scholar]
  12. Fitzpatrick D. R. 1989; Immunobiology of bovine herpesvirus I glycoproteins gI and gIII. Ph.D. thesis, University of Saskatchewan;
    [Google Scholar]
  13. Fitzpatrick D. R., Zamb T. J., Parker M. D., van Drunen Littelvan den Hurk S., Babiuk L. A., Lawman M. J. P. 1988; Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells. Journal of Virology 62:4239–4248
    [Google Scholar]
  14. Gorman C. M. 1985; High efficiency gene transfer into mammalian cells. In DNA Cloning: A Practical Approach vol 2 pp 143–165 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  15. Gorman C. M., Howard B. H. 1983; Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Research 11:7631–7648
    [Google Scholar]
  16. Guo J., Dimarzo Veronese F., Tschachler E., Pal R., Kalyanaraman V. S., Gallo R. C., Reitz M. S. Jr 1990; Characterization of an HIV-point mutant blocked in envelope glycoprotein cleavage. Virology 174:217–224
    [Google Scholar]
  17. Hammerschmidt W., Conraths F., Mankertz J., Pauli G., Ludwig H., Buhk H. -J. 1988; Conservation of a gene cluster including glycoprotein B in bovine herpesvirus type 2 (BHV-2) and herpes simplex virus type 1 (HSV-1). Virology 165:388–405
    [Google Scholar]
  18. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  19. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, U.S A 82:488–492
    [Google Scholar]
  20. Little S. P., Jofre J. T., Courtney R. J., Schaffer P. A. 1981; A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115:149–160
    [Google Scholar]
  21. Lobigs M., Garoff H. 1990; Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. Journal of Virology 64:1233–1240
    [Google Scholar]
  22. McCune J. M., Rabin L. B., Feiberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. 1988; Endoproteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell 53:55–67
    [Google Scholar]
  23. McKnight S. L. 1980; The nucleotide sequence and transcript map of herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbour Laboratory:
    [Google Scholar]
  25. Marsh M., Dalgleish A. 1987; How do human immunodeficiency viruses enter cells?. Immunology Today 8:369–371
    [Google Scholar]
  26. Misra V., Blewett E. L. 1991; Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: a strategy for studying the function of an essential herpesvirus gene. Journal of General Virology 72:385–392
    [Google Scholar]
  27. Misra V., Blumenthal R. M., Babiuk L. A. 1981; Proteins specified by bovine herpesvirus 1 (infectious bovine rhinotracheitis virus). Journal of Virology 40:367–378
    [Google Scholar]
  28. Misra V., Nelson R., Smith M. 1988; Sequence of a bovine herpesvirus type-1 glycoprotein gene that is homologous to the herpes simplex gene for the glycoprotein gB. Virology 166:542–549
    [Google Scholar]
  29. Nelson R., Adachi A. -M., Chisholm H., Misra V. 1989; Temperature-sensitive mutants of bovine herpesvirus type 1: mutants which make unaltered levels of ‘early’ glycoproteins but fail to synthesize a ‘late’ glycoprotein. Journal of General Virology 70:125–132
    [Google Scholar]
  30. Ohuchi M., Orlich M., Ohuchi R., Kuroda K., Garten W., Klenk H.-D., Rott R. 1989; Mutations at the cleavage recognition site of the hemagglutinin alter the pathogenicity of influenza virus A/chick/Penn/83 (H5N2). In Genetics and Pathogenicity of Negative Stranded Viruses pp 373–378 Edited by Kolakofsky D., Mahy B. W. J. London: Elsevier;
    [Google Scholar]
  31. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985; Epstein–Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  32. Pereira L., Dondero D., Norrild B., Roizman B. 1981; Differential immunological reactivity and processing of glycoproteins gA and gB of herpes simplex virus types 1 and 2 made in Vero and HEp-2 cells. Proceedings of the National Academy of Sciences, U.S.A 78:5202–5206
    [Google Scholar]
  33. Pereira L., Dondero D., Roizman B. 1982; Herpes simplex virus glycoprotein gA/B: evidence that the infected Vero cell products comap and arise by proteolysis. Journal of Virology 44:88–97
    [Google Scholar]
  34. Pereira L., Ali M., Kousoulas K., Huo B., Banks T. 1989; Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24
    [Google Scholar]
  35. Riggio M. P., Cullinane A. A., Onions D. E. 1989; Identification and nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4. Journal of Virology 63:1123–1133
    [Google Scholar]
  36. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  37. Roizman B., Sears A. E. 1990; Herpes simplex viruses and their replication. In Virology, 2nd. edn., vol 2 pp 1795–1841 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  38. Ross L. J. N., Sanderson M., Scott S. D., Binns M. M., Doel T., Milne B. 1989; Nucleotide sequence and characterization of the Marek’s disease virus homologue of glycoprotein B of herpes simplex virus. Journal of General Virology 70:1789–1804
    [Google Scholar]
  39. Spear P. G. 1985; Glycoproteins specified by herpes simplex virus. In The Herpesviruses vol 3 pp 315–356 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  40. Stuve L. L., Brown-Shimer S., Pachl C., Najarian R., Dina D., Burke R. L. 1987; Structure and expression of the herpes simplex virus type 2 glycoprotein B gene. Journal of Virology 61:326–335
    [Google Scholar]
  41. Tashiro M., Pritzer E., Khoshnan M. S., Yamakawa M., Kuroda K., Klenk H.-D., Rott R., Seto J. T. 1989; Pantropic variant of Sendai virus: a mutational change in the proteolytic cleavability of fusion glycoprotein alters organ tropism in mice. In Genetics and Pathogenicity of Negative Strand Viruses pp 341–347 Edited by Kolakofsky D., Mahy B. W. J. London: Elsevier;
    [Google Scholar]
  42. van Drunen Littel-van den Hurk S., Babiuk L. A. 1986; Synthesis and processing of bovine herpesvirus 1 glycoproteins. Journal of Virology 59:401–410
    [Google Scholar]
  43. Wagner M. J., Sharp J. A., Summers W. C. 1981; Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proceedings of the National Academy of Sciences, U.S.A 78:1441–1445
    [Google Scholar]
  44. Whalley J. M., Robertson G. R., Scott N. A., Hudson G. C., Bell C. W., Woodworth L. M. 1989; Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB. Journal of General Virology 70:383–394
    [Google Scholar]
  45. White J., Kelian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Review of Biophysics 16:151–195
    [Google Scholar]
  46. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  47. Zoller M. J., Smith M. 1987; Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods in Enzymology 154:329–403
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-9-2083
Loading
/content/journal/jgv/10.1099/0022-1317-72-9-2083
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error