1887

Abstract

We have isolated a maedi-visna-like virus from the peripheral blood mononuclear cells of a British sheep displaying symptoms of arthritis and pneumonia. After brief passage in fibroblasts this virus (designated EV1) was used to infect choroid plexus cells. cDNA clones of the virus were prepared from these cells and sequenced. Gaps between non-overlapping clones were filled using gene amplification by the polymerase chain reaction. The genome structure is similar to that described for visna virus strain 1514, and differs from that described for visna virus strain SA-OMVV in not having a reading frame. Overall the genome differs by about 20% between each of these strains, but there is fivefold variation in the amount of divergence of derived amino acid sequences of different open reading frames. Two sequenced EV1 clones each contain only one copy of the 43 bp repeat, with paired AP-1 sites, which is a feature of other ruminant lentiviral long terminal repeats (LTRs). However, analysis of viral DNA in infected cells by gene amplification shows that LTRs with two repeats do occur, albeit at a relatively low frequency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-8-1893
1991-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/8/JV0720081893.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-8-1893&mimeType=html&fmt=ahah

References

  1. Balfe P., Simmonds P., Ludlam C. E., Bishop J. O., Leigh Brown A. 1990; Concurrent evolution of human immunodeficiency virus type 1 in patients infected from the same source: rate of sequence change and low frequency of inactivating mutations. Journal of Virology 64:6221–6233
    [Google Scholar]
  2. Braun M. J., Clements J. E., Gonda M. A. 1987; The visna virus genome: evidence for a hypervariable site in the env gene and sequence homology among lentivirus envelope proteins. Journal of Virology 61:4046–4054
    [Google Scholar]
  3. Cheevers W. P., McGuire T. C. 1988; The lentiviruses: maedi/visna, caprine arthritis–encephalitis and equine infectious anemia. Advances in Virus Research 34:189–215
    [Google Scholar]
  4. Coetzee S., Els H. J., Verwoerd D. W. 1976; Transmission of jaagsiekte (ovine pulmonary adenomatosis) by means of a permanent cell line established from affected lungs. Onderstepoort Journal of Veterinary Research 43:133–142
    [Google Scholar]
  5. Cullen B. R., Hauber J., Campbell K., Sodroski J. G., Haseltine W., Rosen C. A. 1988; Subcellular localization of the human immunodeficiency virus trans-acting rev gene product. Journal of Virology 62:2498–2501
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  7. Emini E. A., Hughes J. V., Perlow D. S., Boger J. 1985; Induction of a hepatitis A virus-neutralizing antibody by a virus specific synthetic peptide. Journal of Virology 55:836–839
    [Google Scholar]
  8. Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. 1989; The rev (art/trs) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. Journal of Virology 63:1265–1274
    [Google Scholar]
  9. Felser J. M., Klimkait T., Silver J. 1989; A syncytia assay for human immunodeficiency virus type 1 (HIV-1) envelope protein and its use for studying HIV-1 mutations. Virology 170:566–570
    [Google Scholar]
  10. Franchini G., Robert-Guroff M., Ghrayeb J., Chang N. T., Wong-Staal F. 1986; Cytoplasmic localization of HTLV-III3′ orf protein in cultured T-cells. Virology 153:593–599
    [Google Scholar]
  11. Freed E. O., Myers D. J., Risser R. 1990; Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences, U.S.A 87:4650–4654
    [Google Scholar]
  12. Freier S. M., Kierzek R., Jaegar J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. 1986; Improved free-energy parameters for predictions of RNA duplex stability. Proceedings of the National Academy of Sciences, U.S.A. 83:9373–9377
    [Google Scholar]
  13. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E. 1989; Regulation of the visna viral LTR in macrophages involves cellular factors that bind sequences containing AP-1 sites. Molecular and Cellular Biology 9:2728–2733
    [Google Scholar]
  14. Gendelman H. E., Narayan O., Molineaux S., Clements J. E., Ghotbi Z. 1985; Slow persistent replication of Ientiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proceedings of the National Academy of Sciences, U.S.A. 82:7086–7090
    [Google Scholar]
  15. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  16. Guy B., Riviere Y., Dott K., Regnault A., Kieny M. P. 1990; Mutational analysis of the HIV nef protein. Virology 176:413–425
    [Google Scholar]
  17. Haase A. T. 1986; Pathogenesis of lentivirus infections. Nature, London 322:130–136
    [Google Scholar]
  18. Hess J. L., Small J. A., Clements J. E. 1989; Sequences in the visna viral long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and transactivation. Journal of Virology 63:3001–3015
    [Google Scholar]
  19. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  20. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A 78:3824–3828
    [Google Scholar]
  21. Jacks T., Madhani H. D., Masiarz F. R., Varmus H. E. 1988; Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447–458
    [Google Scholar]
  22. Javaherian K., Landlois A. J., McDanal C., Ross K. L., Eckler L. I., Jellis C. L., Profy A. T., Ruscle J. R., Bolognesi D. P., Putney S. D., Matthews T. J. 1986; Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proceedings of the National Academy of Sciences, U.S.A 83:6768–6772
    [Google Scholar]
  23. Kaminchik I., Bashan N., Pinchasi D., Amit B., Sarver N., Johnston M. I., Fischer M., Yavin Z., Gorecki M., Panet A. 1990; Expression and biochemical characterization of human immunodeficiency virus type 1 nef gene product. Journal of Virology 64:3447–3454
    [Google Scholar]
  24. Keohavong P., Thilly W. G. 1989; Fidelity of DNA polymerases in DNA amplification. Proceedings of the National Academy of Sciences, U.S.A 86:9253–9257
    [Google Scholar]
  25. Komalski M., Potz J., Basiripour L., Dorfman T., Goh W.-C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. 1987; Functional analysis of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355
    [Google Scholar]
  26. Laurent A. G., Hovanessian A. G., Riviere Y., Krust B., Regnault A., Montagnier L., Findeli A., Kieny M. P., Guy B. 1990; Production of a non-functional nef protein in human immunodeficiency virus type 1-infected CEM cells. Journal of General Virology 71:2273–2281
    [Google Scholar]
  27. McClure M. A., Johnson M. S., Doolittle R. F. 1987; Relocation of a protease-like gene segment between two retroviruses. Proceedings of the National Academy of Sciences, U.S.A 84:2693–2697
    [Google Scholar]
  28. Mazarin V., Gourdou I., Querat G., Sauze N., Vigne R. 1988; Genetic structure and function of an early transcript of visna virus. Journal of Virology 62:4813–4818
    [Google Scholar]
  29. Mazarin V., Gourdou I., Querat G., Sauze N., Audoly G., Vitu C., Russo P., Rousselot C., Fillipi P., Vigne R. 1990; Subcellular localization of rev- gene produced in visna virus infected cells. Virology 178:305–310
    [Google Scholar]
  30. Meyerhans A., Cheymier R., Albert J., Seth M., Kwok S., Sninsky J., Morfeldt-Manson L., Asjo B., Wain-Hobson S. 1988; Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58:901–910
    [Google Scholar]
  31. Meyerhans A., Vartanian J.-P., Wain-Hobson S. 1990; DNA recombination during PCR. Nucleic Acids Research 18:1687–1691
    [Google Scholar]
  32. Molineaux S., Clements J. E. 1983; Molecular cloning of unintegrated visna viral DNA and characterisation of frequent deletions in the 3′ terminus. Gene 23:137–148
    [Google Scholar]
  33. Narayan O., Cork L. C. 1985; Lentiviral diseases of sheep and goats: chronic pneumonia, leukoencephalomyelitis and arthritis. Reviews of Infectious Diseases 7:89–98
    [Google Scholar]
  34. Narayan O., Griffin D. E., Clements J. E. 1978; Virus mutation during ‘slow infection’: temporal development and characterization of mutants of visna virus recovered from sheep. Journal of General Virology 41:343–352
    [Google Scholar]
  35. Narayan O., Clements J. E., Griffin D. E., Wolinsky J. S. 1981; Neutralizing antibody spectrum determines the antigenic profiles of emerging mutants of visna virus. Infection and Immunity 32:1045–1050
    [Google Scholar]
  36. Narayan O., Wolinsky J. S., Clements J. E., Strandberg J. D., Griffin D. E., Cork L. C. 1982; Slow virus replication: the role of macrophages in the persistence and expression of visna viruses in sheep and goats. Journal of General Virology 59:345–356
    [Google Scholar]
  37. Ohara O., Dorit R. L., Gilbert W. 1989; One sided polymerase chain reaction: the amplification of cDNA. Proceedings of the National Academy of Sciences, U.S.A. 86:5673–5677
    [Google Scholar]
  38. Perkins A., Cochrane A. W., Ruben S. M., Rosen C. A. 1989; Structural and functional characterization of the human immunodeficiency virus rev protein. Journal of Acquired Immunodeficiency Syndromes 2:256–263
    [Google Scholar]
  39. Perrin S., Gilliland G. 1990; Site-specific mutagenesis using asymmetric polymerase reaction and a single mutant primer. Nucleic Acids Research 18:7433–7438
    [Google Scholar]
  40. Querat G., Audoly G., Sonigo P., Vigne R. 1990; Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus: phylogenetic history of lentiviruses. Virology 175:434–447
    [Google Scholar]
  41. Saltarelli M., Querat G., Konings D. A. M., Vigne R., Clements J. E. 1990; Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364
    [Google Scholar]
  42. Samuel K. P., Seth A., Konokpa A., Lautenberger J. A., Papas T. S. 1987; The 3′-orf protein of human immunodeficiency virus shows structural homology with the phosphorylation domain of human interleukin-2 receptor and the ATP binding site of the protein kinase family. FEBS Letters 18:81–86
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  44. Sargan D. R., Bennet I. D. 1989; A transcriptional map of visna virus: definition of second intron structure suggests a rev- like gene product. Journal of General Virology 70:1995–2006
    [Google Scholar]
  45. Scharf S. J., Holm G. T., Erlich H. A. 1986; Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233:1076–1078
    [Google Scholar]
  46. Scott J. V., Stowring L., Haase A. T., Narayan O., Vigne R. 1979; Antigenic variation in visna virus. Cell 18:321–327
    [Google Scholar]
  47. Sodroski J., Goh W.-C., Rosen C., Tartar A., Portetelle D., Burny A., Haseltine W. 1986; Replication and cytopathic potential of HTLV III/LAV with sor gene deletions. Science 231:1549–1553
    [Google Scholar]
  48. Sonigo P., Alizon M., Staskus K., Klatzman D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  49. Starcich B. R., Hahn B. H., Shaw G. M., McNeely P. D., Modrow S., Wolf H., Parks E. S., Parks W. P. 1986; Identification and characterization of conserved and variable regions of envelope gene of HTLV-III/LAV. Cell 45:637–648
    [Google Scholar]
  50. Venkatesh L. K., Mohammed S., Chinnadurai G. 1990; Functional domains of HIV-1 rev gene required for trans-regulation and sub-cellular localization. Virology 176:39–47
    [Google Scholar]
  51. Zweig M., Samuel K. P., Showalter S. D., Bladen G. C., Lautenberger J. A., Hodge D. R., Papas T. K. 1990; Heterogeneity of nef proteins in cells infected with human immunodeficiency virus type 1. Virology 179:504–507
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-8-1893
Loading
/content/journal/jgv/10.1099/0022-1317-72-8-1893
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error