1887

Abstract

The M2 protein of influenza A virus, a 97 amino acid integral membrane protein expressed on the surface of infected cells, is covalently modified with long chain fatty acids. The fatty acid bond is sensitive to treatment with neutral hydroxylamine and mercaptoethanol, which indicates a labile thioester type linkage. Thinlayer chromatographic fatty acid analysis of [H]myristic and [H]palmitic acid-labelled M2 protein shows that palmitic acid is the predominant fatty acid linked to this polypeptide. Palmitoylation of M2 occurs post-translationally and causes an upward shift in the SDS-PAGE mobility of the protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-6-1461
1991-06-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/6/JV0720061461.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-6-1461&mimeType=html&fmt=ahah

References

  1. Arumugham R. G., Seid R. C., Doyle S., Hidreth S. W., Paradiso P. R. 1989; Fatty acid acylation of the fusion glycoprotein of human respiratory syncytial virus. Journal of Biological Chemistry 264:10339–10342
    [Google Scholar]
  2. Cox N. J., Kitame F., Kendal A. P., Maassab H. F., Naeve C. 1988; Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strain, A/Ann Arbor/6/60. Virology 167:554–567
    [Google Scholar]
  3. Gaedigk-Nitschko K., Schlesinger M. J. 1990; The Sindbis virus 6K protein can be detected in virions and is acylated with fatty acids. Virology 175:274–281
    [Google Scholar]
  4. Gaedigk-Nitschko K., Ding M., Levy M. A., Schlesinger M. J. 1990; Site-directed mutations in the Sindbis virus 6K protein reveals sites for fatty acylation, and the underacylated protein affects virus release and virion structure. Virology 175:282–291
    [Google Scholar]
  5. Grand R. J. A. 1989; Acylation of viral and eukaryotic proteins. Biochemical Journal 298:625–638
    [Google Scholar]
  6. Hay A. J., Wolstenholme A. J., Skehel J. J., Smith M. H. 1985; The molecular basis of the specific anti-influenza action of amantadine. EMBO Journal 4:3021–3024
    [Google Scholar]
  7. Hiebert S. W., Richardson C. P., Lamb R. A. 1985; Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5. Journal of Virology 62:2347–2357
    [Google Scholar]
  8. Klenk H.-D., Rott R. 1980; Cotranslational and posttranslational processing of viral glycoproteins. Current Topics in Microbiology and Immunology 90:19–48
    [Google Scholar]
  9. Klenk H.-D., Rott R. 1988; The molecular biology of influenza virus pathogenicity. Advances in Virus Research 34:247–281
    [Google Scholar]
  10. Lamb R. A. 1989; The genes and proteins of influenza viruses. In The Influenza Viruses pp. 1–87 Edited by Krug R. M. New York: Plenum Press;
    [Google Scholar]
  11. Lamb R. A., Choppin P. W. 1981; Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology 112:729–739
    [Google Scholar]
  12. Lamb R. A., Zebedee S. L., Richardson C. D. 1985; Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40:627–633
    [Google Scholar]
  13. Magee A. J., Courtneidge S. A. 1985; Two classes of fatty acid acylated proteins exist in eukaryotic cells. EMBO Journal 4:1137–1144
    [Google Scholar]
  14. Magee A. J., Koyama A. H., Malfer C., Wen D., Schlesinger M. J. 1984; Release of fatty acids from virus glycoproteins by hydroxylamine. Biochimica et biophysica acta 798:156–166
    [Google Scholar]
  15. Olmstedt R. A., Collins P. L. 1989; The 1A protein of human respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species. Journal of Virology 63:2019–2029
    [Google Scholar]
  16. Rose J. K., Adams G. A., Gallione C. J. 1984; The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Proceedings of the National Academy of Sciences, U.S.A 81:2050–2054
    [Google Scholar]
  17. Schmidt M., Schmidt M. F. G., Rott R. 1988; Chemical identification of cysteine as palmitoylation site in a transmembrane protein (Semliki Forest virus E1). Journal of Biological Chemistry 263:18635–18639
    [Google Scholar]
  18. Schmidt M. F. G. 1982; Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology 116:327–338
    [Google Scholar]
  19. Schmidt M. F. G. 1984; The transfer of myrisdc and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. EMBO Journal 3:2295–2300
    [Google Scholar]
  20. Schmidt M. F. G. 1989; Fatty acylation of proteins. Biochimica et biophysica acta 988:411–426
    [Google Scholar]
  21. Schmidt M. F. G., Schlesinger M. J. 1980; Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. Journal of Biological Chemistry 255:3334–3339
    [Google Scholar]
  22. Sefton B. M., Buss J. E. 1987; The covalent modification of eukaryotic proteins with lipid. Journal of Cell Biology 104:1449–1453
    [Google Scholar]
  23. Stoffel W., Hillen H., Schröder W., Deutzmann W. 1983; The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe Seyler’s Zeitschrift für physiologische Chemie 364:1455–1466
    [Google Scholar]
  24. Sugrue R. J., Belshe R. B., Hay A. J. 1990; Palmitoylation of the influenza A virus M2 protein. Virology 179:51–56
    [Google Scholar]
  25. Towler J. W., Gordon J. I., Adams S. P., Glaser L. 1988; The biology and enzymology of eukaryotic protein acylation. Annual Review of Biochemistry 57:69–99
    [Google Scholar]
  26. Veit M., Herrler G., Schmidt M. F. G., Rott R., Klenk H.-D. 1990; The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology 177:807–811
    [Google Scholar]
  27. Veit M., Kretzchmar E., Kuroda K., Garten W., Schmidt M. F. G., Klenk H.-D., Rott R. 1991; Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. Journal of Virology (in press)
    [Google Scholar]
  28. Webster R. G., Rott R. 1987; Influenza A virus pathogenicity: the pivotal role of hemagglutinin. Cell 50:665–666
    [Google Scholar]
  29. Wilcox C. A., Hu J. S., Olson E. N. 1987; Acylation of proteins with myristic acid occurs cotranslationally. Science 238:1275–1278
    [Google Scholar]
  30. Williams M. A., Lamb R. A. 1986; Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminaI region. Molecular and Cellular Biology 6:4917–4928
    [Google Scholar]
  31. Zebedee S. L., Lamb R. A. 1988; Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. Journal of Virology 62:2762–2772
    [Google Scholar]
  32. Zebedee S. L., Lamb R. A. 1989; Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the Ml protein. Proceedings of the National Academy of Sciences, U.S.A 86:1061–1065
    [Google Scholar]
  33. Zebedee S. L., Richardson C. D., Lamb R. A. 1985; Characterization of the influenza virus M2 integral membrane protein and expression at the infected-cell surface from cloned cDNA. Journal of Virology 56:502–511
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-72-6-1461
Loading
/content/journal/jgv/10.1099/0022-1317-72-6-1461
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error