Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat Free

Abstract

The nucleotide sequence of 42090 bp of vaccinia virus strain WR is presented. The sequence includes the I L, F, G and I fragments and starts near the centre of the dIII A fragment and extends rightwards towards the genomic terminus, finishing approximately 0.5 kb internal of the inverted terminal repeat (ITR). Translation of this region has identified 65 open reading frames (ORFs) of greater than 65 amino acids in length. Fifty-one of these which do not extensively overlap other larger ORFs have been subjected to further analysis; the other 14 are termed minor ORFs. In the rightmost 28.7 kb, the genes are, with one exception, transcribed towards the genomic terminus, similar to the arrangement of genes at the left end of the virus genome. Internal of this region the genes are expressed off either DNA strand but still predominately rightwards. ORFs are tightly packed with few intergenic non-coding regions of greater than 250 bp. Protein sequence comparisons have established a remarkably high number of homologies with entries in existing protein databases. Of these, DNA ligase, thymidylate kinase, two serine-threonine protein kinases, two serine proteinase inhibitors (serpins), two interleukin-1 receptor homologues and a discontinuous ORF related to tumour necrosis factor receptor have been reported. Other homologies include lectins, profilin, 3β-hydroxy steroid dehydrogenase, superoxide dismutase, guanylate kinase, ankyrin and complement factor H. In addition, there are a number of polypeptides with predicted properties of membrane-associated, secretory or glyco-proteins. Twelve gene families are described here and elsewhere. There is considerable similarity between genes from the right and left end of the virus genome that may have arisen by terminal transposition events. Several differences from the corresponding region of vaccinia virus strain Copenhagen sequence are noted. Near the right terminus the sequences diverge completely, and internal of this there are multiple examples of deletion of short sequences (eight to 10 nucleotides) that lie within penta- or hexanucleotide direct repeats.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-6-1349
1991-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/6/JV0720061349.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-6-1349&mimeType=html&fmt=ahah

References

  1. Adachi Y., Yanagida M. 1989; High order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crml+ which encodes a 115-kD protein preferentially localised in the nucleus and its periphery. Journal of Cell Biology 108:1195–1207
    [Google Scholar]
  2. Ahn B.-Y., Gershon P. D., Jones E. V., Moss B. 1990; Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. Molecular and Cellular Biology 10:5433–5441
    [Google Scholar]
  3. Amegadzie B. Y., Holmes M. H., Cole N. B., Jones E. V., Earl P. L., Moss B. 1991; Identification, sequence and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. Virology 180:88–98
    [Google Scholar]
  4. Archard L. C., Mackett M., Barnes D. E., Dumbell K. R. 1984; The genome structure of cowpox virus white pock variants. Journal of General Virology 65:875–886
    [Google Scholar]
  5. Aves S. J., Durkacz B. W., Carr A., Nurse P. 1985; Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 ′start′ gene. EMBO Journal 4:457–463
    [Google Scholar]
  6. Baer A., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  7. Baldick C. J., Moss B. 1987; Resistance to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62, 000 polypeptide. Virology 156:138–145
    [Google Scholar]
  8. Baldwin C. T., Reginato A. M., Prockop D. J. 1989; A new epidermal growth factor-like domain in the human core protein for the large cartilage-specific proteoglycan. Evidence for alternative splicing of the domain. Journal of Biological Chemistry 264:15747–15750
    [Google Scholar]
  9. Ball L. A. 1987; High-frequency homologous recombination in vaccinia virus DNA. Journal of Virology 61:1788–1795
    [Google Scholar]
  10. Barker D. G., White J. H. M., Johnston L. H. 1985; The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage. Nucleic Acids Research 13:8323–8337
    [Google Scholar]
  11. Barker D. G., White J. H. M., Johnston L. H. 1987; Molecular characterisation of the DNA ligase gene, CDC17, from the fission yeast Schizosaccharomyces pombe . European Journal of Biochemistry 162:659–667
    [Google Scholar]
  12. Baroudy B. M., Moss B. 1982; Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. Nucleic Acids Research 10:5673–5679
    [Google Scholar]
  13. Baroudy B. M., Venkatesan S., Moss B. 1982; Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28:315–324
    [Google Scholar]
  14. Barton G. J., Sternberg M. J. E. 1987; A strategy for the rapid multiple alignment of protein sequences. Journal of Molecular Biology 198:327–337
    [Google Scholar]
  15. Belle Isle H., Venkatesan S., Moss B. 1981; Cell-free translation of early and late mRNAs selected by hybridization to cloned DNA fragments derived from the left 14 million to 72 million Daltons of the vaccinia virus genome. Virology 112:306–317
    [Google Scholar]
  16. Berger A., Schiltz E., Schulz G. E. 1989; Guanylate kinase from Saccharomyces cerevisiae. Isolation and characterization, crystallization and preliminary X-ray analysis, amino acid sequence and comparison with adenylate kinases. European Journal of Biochemistry 184:433–443
    [Google Scholar]
  17. Bertholet C., Drillien R., Wittek R. 1985; One hundred base pairs of 5′ flanking sequence are sufficient to temporally regulate late transcription. Proceedings of the National Academy of Sciences, U. S. A. 82:2096–2100
    [Google Scholar]
  18. Binns M. M., Britton B. S., Mason C., Boursnell M. E. G. 1990; Analysis of the fowlpox virus genome corresponding to the vaccinia virus D6 to A1 region: location of, and variation in, nonessential genes in poxviruses. Journal of General Virology 71:2873–2881
    [Google Scholar]
  19. Blobel G. 1980; Intracellular protein topogenesis. Proceedings of the National Academy of Sciences, U. S. A. 77:1496–1500
    [Google Scholar]
  20. Bongiovanni A. M. 1962; The adrenogenital syndrome with deficiency of 3β-hydroxysteroid (3β-HSD) dehydrogenase. Journal of Clinical Investigation 41:2086–2092
    [Google Scholar]
  21. Boursnell M. E. G., Foulds I. J., Cambell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus Hin dIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. Journal of General Virology 69:2995–3003
    [Google Scholar]
  22. Broyles S. S., Moss B. 1986; Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding the 147-kDa and 22-kDa subunits. Proceedings of the National Academy of Sciences, U. S. A. 83:3141–3145
    [Google Scholar]
  23. Buller R. M. L., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a TK negative phenotype. Nature, London 317:812–815
    [Google Scholar]
  24. Campbell R. D., Law S. K. A., Reid K. B. M., Sim R. B. 1988; Structure, organization, and regulation of the complement genes. Annual Review of Immunology 6:161–195
    [Google Scholar]
  25. Carrasco L., Esteban M. 1982; Modification of membrane permeability in vaccinia virus-infected cells. Virology 117:62–69
    [Google Scholar]
  26. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  27. Chua T. P., Smith C. E., Reith R. W., Williamson J. D. 1990; Inflammatory responses and the generation of chemoattractant activity in cowpox virus infected tissues. Immunology 69:202–208
    [Google Scholar]
  28. Colinas R. J., Goebel S. J., Davis S. W., Johnson G., Norton E. K., Paoletti E. 1990; A DNA ligase gene in the Copenhagen strain of vaccinia virus is non-essential for viral replication and recombination. Virology 179:267–275
    [Google Scholar]
  29. Coupar B. E. H., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of the influenza haemagglutinin expression in vaccinia. Eurpoean Journal of Immunology 16:1479–1487
    [Google Scholar]
  30. Davison A. J., Moss B. 1989; The structure of vaccinia virus late promoters. Journal of Molecular Biology 210:771–784
    [Google Scholar]
  31. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  32. Dayhoff M. O., Barker W. C., Hunt L. T. 1983; Establishing homologies in protein sequences. Methods in Enzymology 91:524–545
    [Google Scholar]
  33. Drickamer K. 1988; Two distinct classes of carbohydrate-recognition domains in animal lectins. Journal of Biological Chemistry 263:9557–9560
    [Google Scholar]
  34. Dubbs D. R., Kit S. 1964; Isolation and properties of vaccinia virus mutants deficient in thymidine kinase inducing activity. Virology 22:214–225
    [Google Scholar]
  35. Earl P. L., Jones E. V., Moss B. 1986; Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene. Proceedings of the National Academy of Sciences, U.S.A 83:3659–3663
    [Google Scholar]
  36. Fenner F. 1990; Poxviruses. In Virology pp 2113–2133 Edited by Fields B. N. New York: Raven Press;
    [Google Scholar]
  37. Gillard S., Spehner D., Drillien R., Kirn A. 1986; Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proceedings of the National Academy of Sciences, U.S.A 83:5573–5577
    [Google Scholar]
  38. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  39. Gordon J., Kovala T., Dales S. 1988; Molecular characterization of a prominent antigen of the vaccinia virus envelope. Virology 167:361–369
    [Google Scholar]
  40. Hiller G., Weber K. 1982; A phosphorylated basic vaccinia virus virion polypeptide of molecular weight 11, 000 is exposed on the surface of mature particles and interacts with actin-containing cytoskeletal elements. Journal of Virology 44:647–657
    [Google Scholar]
  41. Hiller G., Weber K., Schneider L., Parajsz C., Jungwirth C. 1979; Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98:142–153
    [Google Scholar]
  42. Hirt P., Hiller G., Witter R. 1986; Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. Journal of Virology 58:757–764
    [Google Scholar]
  43. Hoagland C. L., Ward S. L., Smadel J. E., Rivers T. M. 1941; Constituents of elementary bodies of vaccinia. IV. Demonstration of copper in the purified virus. Journal of Experimental Medicine 74:69–80
    [Google Scholar]
  44. Howard S. T., Smith G. L. 1989; Two early vaccinia virus genes encode polypeptides related to protein kinases. Journal of General Virology 70:3187–3201
    [Google Scholar]
  45. Howard S. T., Chan Y. C., Smith G. L. 1991; Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumour necrosis factor receptor family. Virology 180:633–647
    [Google Scholar]
  46. Ichihashi Y. 1977; Vaccinia-specific hemagglutinin. Virology 76:527–538
    [Google Scholar]
  47. Ichinose A., McMullen B. A., Fujikawa K., Davie E. W. 1986; Amino acid sequence of the b subunit of human factor XIII, a protein composed of ten repetitive segments. Biochemistry 25:4633–4638
    [Google Scholar]
  48. Ikuta K., Takami M., Kim C. W., Honjo T., Miyoshi T., Tagaya Y., Kawabe T., Yodoi J. 1987; Human lymphocyte Fc receptor for IgE: sequence homology of its cloned cDNA with animal lectins. Proceedings of the National Academy of Sciences, U.S.A 84:819–823
    [Google Scholar]
  49. Ink B. S., Pickup D. J. 1990; Transcription of a poxvirus early gene is regulated both by a short promoter element and by a transcriptional termination signal controlling transcriptional interference. Journal of Virology 63:4632–4644
    [Google Scholar]
  50. Jin D., Li Z., Jin Q., Yuwen H., Hou Y. 1989; Vaccinia virus hemagglutinin. A novel member of the immunoglobulin super-family. Journal of Experimental Medicine 170:571–576
    [Google Scholar]
  51. Johnson D., Lanahan A., Buck C. R., Sehgal A., Morgan C., Mercer E., Bothwell M., Chao M. 1986; Expression and structure of the human NGF receptor. Cell 47:545–554
    [Google Scholar]
  52. Jong A. Y., Kuo C.-I., Campbell J. L. 1984; The cdc8 gene of yeast encodes thymidylate kinase. Journal of Biological Chemistry 259:11052–11059
    [Google Scholar]
  53. Kerr S. M., Smith G. L. 1989; Vaccinia virus encodes a polypeptide with DNA ligase activity. Nucleic Acids Research 17:9039–9050
    [Google Scholar]
  54. Kerr S. M., Smith G. L. 1991; Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–632
    [Google Scholar]
  55. Kotwal G. J., Moss B. 1988a; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  56. Kotwal G. J., Moss B. 1988b; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature, London 335:176–178
    [Google Scholar]
  57. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  58. Kotwal G. J., Isaacs S. N., McKenzie R., Frank M. M., Moss B. 1990; Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250:827–830
    [Google Scholar]
  59. Kwiatkowski D. J., Bruns G. A. P. 1988; Human profilin: molecular cloning, sequence comparison, and chromosomal analysis. Journal of Biological Chemistry 263:5910–5915
    [Google Scholar]
  60. Lake J. R., Cooper P. D. 1980; Deletions of the terminal sequences in the genomes of the white pock (u) and host-restricted (p) mutants of rabbitpox virus. Journal of General Virology 48:135–147
    [Google Scholar]
  61. Lee-Chen G.-J., Niles E. G. 1988; Transcriptional and translational mapping of the 13 genes in the vaccinia virus Hind III D fragment. Virology 163:52–63
    [Google Scholar]
  62. Lux S. E., John K. M., Bennet V. 1990; Analysis of the cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature, London 344:36–42
    [Google Scholar]
  63. McCord J. M., Fridovich I. 1969; Superoxide dismutase. An enzyme function for erthrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049–6055
    [Google Scholar]
  64. McGeoch D. J. 1990; Protein sequence comparisons show that the ′pseudoproteases′ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Research 18:4105–4110
    [Google Scholar]
  65. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  66. Mackett M., Archard L. C. 1979; Conservation and variation in orthopoxvirus genome structure. Journal of General Virology 45:683–701
    [Google Scholar]
  67. Mallett S., Fossum S., Barclay A. N. 1990; Characteristics of the MRC OX40 antigen of activated CD4 positive T lymphocytes — a molecule related to nerve growth factor receptor. EMBO Journal 9:1063–1068
    [Google Scholar]
  68. Meyuhas O., Klein A. 1990; The ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region. Journal of Biological Chemistry 265:11465–11473
    [Google Scholar]
  69. Moss B. 1990; Poxviridae and their replication. In Virology pp 2079–2111 Edited by Fields B. N. New York: Raven Press;
    [Google Scholar]
  70. Moyer R. W., Graves R. L., Rothe C. T. 1980; The white pock (μ) mutants of rabbit poxvirus. III. Terminal DNA sequence duplication and transposition in rabbit poxvirus. Cell 22:545–553
    [Google Scholar]
  71. Ng N. F., Trinh K.-Y., Hew C. L. 1986; Structure of an antifreeze polypeptide precursor from the sea raven, Hemitriperus americanus . Journal of Biological Chemistry 261:15690–15695
    [Google Scholar]
  72. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16-kb vaccinia virus Hin dIII D fragment. Virology 153:96–112
    [Google Scholar]
  73. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. 1986; Existence of sodium channel messenger RNAs in rat brain. Nature, London 320:188–192
    [Google Scholar]
  74. Nystrom L.-E., Lindberg U., Kendrick-Jones J., Jakes R. 1979; The amino acid sequence of profilin from calf spleen. FEBS Letters 101:161–165
    [Google Scholar]
  75. Ohno H., Takimoto G., McKeithan T. W. 1990; The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60:991–997
    [Google Scholar]
  76. Ono Y., Fujii T., Ogita K., Kikkawa U., Igarashi K., Nishizuka Y. 1988; The structure, expression, and properties of additional members of the protein kinase C family. Journal of Biological Chemistry 263:6927–6932
    [Google Scholar]
  77. Palumbo G. J., Pickup D. J., Fredrickson T. N., McIntyre L. J., Buller R. M. L. 1989; Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus. Virology 172:262–273
    [Google Scholar]
  78. Payne L. G., Norrby E. 1976; Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles. Journal of General Virology 32:63–72
    [Google Scholar]
  79. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, U.S.A 85:2444–2448
    [Google Scholar]
  80. Pickup D. J., Ink B. S., Parsons B. L., Hu W., Joklik W. K. 1984; Spontaneous deletions and duplications of sequences in the genome of cowpox virus. Proceedings of the National Academy of Sciences, U.S.A 81:6817–6821
    [Google Scholar]
  81. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of Sciences, U.S.A 83:7698–7702
    [Google Scholar]
  82. Plucienniczak A., Schroeder E., Zettlmeissl G., Streeck R. E. 1985; Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucleic Acids Research 13:985–998
    [Google Scholar]
  83. Query C. C., Bentley R. C., Keene J. D. 1989; A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57:89–101
    [Google Scholar]
  84. Rempel R. E., Anderson M. K., Evans E., Traktman P. 1990; Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. Journal of Virology 64:574–583
    [Google Scholar]
  85. Rodriguez J. F., Esteban M. 1987; Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. Journal of Virology 61:3550–3554
    [Google Scholar]
  86. Rodriguez J. F., Kahn J. S., Esteban M. 1986; Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene. Proceedings of the National Academy of Sciences, U.S.A 83:9566–9570
    [Google Scholar]
  87. Rosel J., Moss B. 1985; Transcriptional and translational mapping of a vaccinia virus gene encoding the precursor of the major core antigen 4b. Journal of Virology 56:830–838
    [Google Scholar]
  88. Rosel J. L., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hin dIII H fragment. Journal of Virology 60:436–449
    [Google Scholar]
  89. Roseman N. A., Hruby D. E. 1987; Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication. Journal of Virology 61:1398–1406
    [Google Scholar]
  90. Roseman N. A., Slabaugh M. B. 1990; The vaccinia virus Hin dIII F fragment: nucleotide sequence of the left 6.2 kb. Virology 178:410–418
    [Google Scholar]
  91. Sai S., Tanaka T., Kosher R. A., Tanzer M. L. 1986; Cloning and sequence analysis of a partial cDNA for chicken cartilage proteoglycan core protein. Proceedings of the National Academy of Sciences, U.S.A 83:5081–5085
    [Google Scholar]
  92. Schinina M. E., Barra D., Gentilomo S., Bossa F., Capo C., Rotilio G., Calabrese L. 1986; Primary structure of a cationic Cu, Zn superoxide dismutase. The sheep enzyme. FEBS Letters 207:7–10
    [Google Scholar]
  93. Schmitt J. F. C., Stunnenberg H. G. 1989; Sequence and transcriptional analysis of the vaccinia virus Hin dIII I fragment. Journal of Virology 62:1889–1897
    [Google Scholar]
  94. Schulz T. F., Schwaeble W., Stanley K. K., Weiss E., Dierich M. P. 1986; Human complement factor H: isolation of cDNA clones and partial cDNA sequence of the 38-kDa tryptic fragment containing the binding site for C3b. European Journal of Immunology 16:1351–1355
    [Google Scholar]
  95. Shida H. 1986; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451–462
    [Google Scholar]
  96. Shuman S., Golder M., Moss B. 1989; Insertional mutagenesis of the vaccinia virus gene encoding a type I DNA topoisomerase: evidence that the gene is essential for virus growth. Virology 170:302–306
    [Google Scholar]
  97. Sims J. E., March C. J., Cosman D., Widmer M. B., MacDonald H. R., McMahan C. J., Grubin C. E., Wignall J. M., Jackson J. L., Call S. M., Friend D., Alpert A. R., Gillis S., Urdal D. L., Dower S. K. 1988; cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241:585–589
    [Google Scholar]
  98. Sims J. E., Acres R. B., Grubin C. E., McMahan C. J., Wignall J. M., March C. J., Dower S. K. 1989; Cloning the interleukin 1 receptor from human T cells. Proceedings of the National Academy of Sciences, U.S.A 86:8946–8950
    [Google Scholar]
  99. Slabaugh M., Roseman N. 1989; Retroviral protease-like gene in the vaccinia virus genome. Proceedings of the National Academy of Sciences, U.S.A 86:4152–4155
    [Google Scholar]
  100. Slabaugh M. B., Johnson T. L., Mathews C. K. 1984; Vaccinia virus induces ribonucleotide reductase in primate cells. Journal of Virology 52:507–514
    [Google Scholar]
  101. Slabaugh M., Roseman N., Davis R., Mathews C. 1988; Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. Journal of Virology 62:519–527
    [Google Scholar]
  102. Smith C. A., Davis T., Anderson D., Solam L., Beckmann M. P., Jerzy R., Dower S. K., Cosman D., Goodwin R. G. 1990; A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023
    [Google Scholar]
  103. Smith G. L., Chan Y. C. 1991; Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. Journal of General Virology 72:511–518
    [Google Scholar]
  104. Smith G. L., Howard S. T., Chan Y. C. 1989a; Vaccinia virus encodes a family of genes with homology to serine protease inhibitors. Journal of General Virology 70:2333–2343
    [Google Scholar]
  105. Smith G. L., Chan Y. S., Kerr S. M. 1989b; Transcriptional mapping and nucleotide sequence of a vaccinia virus gene with extensive homology to yeast DNA ligase. Nucleic Acids Research 17:9050–9061
    [Google Scholar]
  106. Smith G. L., De Carlos A., Chan Y. S. 1989c; Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Research 17:7581–7590
    [Google Scholar]
  107. Spehner D., Gillard S., Drillien R., Kirn A. 1988; A cowpox virus gene required for multiplication in Chinese hamster ovary cells. Journal of Virology 62:1297–1304
    [Google Scholar]
  108. Spehner D., Drillien R., Lecocq J. P. 1990; Construction of fowlpox virus vectors with intergenic insertions: expression of the beta-galactosidase gene and the measles virus fusion gene. Journal of Virology 64:527–533
    [Google Scholar]
  109. Spiess M., Lodish H. F. 1985; Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proceedings of the National Academy of Sciences, U.S.A 82:6465–6469
    [Google Scholar]
  110. Spyropoulos D. D., Robert B. E., Panicali D. L., Cohen L. K. 1988; Delineation of the viral products of recombination in vaccinia virus-infected cells. Journal of Virology 62:1046–1054
    [Google Scholar]
  111. Sri Widada J., Ferraz C., Liautard J. P. 1989; Total coding sequence of profilin from Mus musculus macrophage. Nucleic Acids Research 17:2855
    [Google Scholar]
  112. Staden R. 1982; Automation of computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  113. Stehle T., Schulz G. E. 1990; Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP. Journal of Molecular Biology 211:249–254
    [Google Scholar]
  114. Steinman H. M., Naik V. R., Abernethy J. L., Hill R. L. 1974; Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. Journal of Biological Chemistry 249:7326–7338
    [Google Scholar]
  115. Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. C. 1983; Structure and mechanism of copper, zinc superoxide dismutase. Nature, London 306:284–287
    [Google Scholar]
  116. Takio K., Blumenthal D. K., Walsh K. A., Titani K., Krebs E. G. 1986; Amino acid sequence of rabbit skeletal muscle myosin light chain kinase. Biochemistry 25:8049–8057
    [Google Scholar]
  117. Tamin A., Villarreal E. C., Weinrich S. L., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the vaccinia virus Hin dIII N/M region encoding the genes responsible for resistance to alpha-amanitin. Virology 165:141–150
    [Google Scholar]
  118. Tengelsen L. A., Slabaugh M. B., Bibler J. K., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of ribonucleotide reductase encoded by vaccinia virus. Virology 164:121–131
    [Google Scholar]
  119. The V. L., Lachance Y., Labrie C., Leblanc G., Thomas J., Strickler R. C., Labrie F. 1989; Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. Molecular Endocrinology 3:1310–1312
    [Google Scholar]
  120. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11.2 kilobase, near-terminal, Bam HI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  121. Townsend A. R. M., Bastin J., Gould K., Brownlee G. G., Andrew A., Boyle D. B., Chan Y. S., Smith G. L. 1988; Defective presentation to class I restricted CTL in vaccinia infected cells is overcome by enhanced degradation of antigen. Journal of Experimental Medicine 168:1211–1224
    [Google Scholar]
  122. Traktman P., Anderson M. K., Rempel R. E. 1989; Vaccinia virus encodes an essential gene with strong homology to protein kinases. Journal of Biological Chemistry 264:21458–21461
    [Google Scholar]
  123. Tsoa H., Ren G. F., Chu C. M. 1986; Gene coding for the 11, 000-Dalton polypeptide of the Tian Tan strain of vaccinia virus and its 5′ flanking region: nucleotide sequence. Journal of Virology 57:693–696
    [Google Scholar]
  124. Ueda Y., Morikawa S., Matsuura Y. 1990; Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. Virology 177:588–594
    [Google Scholar]
  125. Upton C., Delange A. M., McFadden G. 1987; Tumorigenic poxviruses: genomic organization and DNA sequence of the terminal inverted repeats of Shope fibroma virus. Virology 160:20–30
    [Google Scholar]
  126. Upton C., Macen J. L., Maranchuk R. A., Delange A. M., McFadden G. 1988; Tumorigenic poxviruses : fine analysis of the recombination junctions in malignant rabbit fibroma virus, a recombinant between Shope fibroma virus and myxoma virus. Virology 166:229–239
    [Google Scholar]
  127. Van Meir E., Witter R. 1988; Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. Archives of Virology 102:19–27
    [Google Scholar]
  128. Venkatesan S., Baroudy B., Moss B. 1981; Distinctive nucleotide sequences adjacent to multiple initiation and termination sites within an early vaccinia virus gene. Cell 25:805–813
    [Google Scholar]
  129. Venkatesan S., Gershowitz A., Moss B. 1982; Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. Journal of Virology 44:637–646
    [Google Scholar]
  130. Weinrich S. L., Hruby D. E. 1986; A tandemly-oriented late gene cluster within the vaccinia virus genome. Nucleic Acids Research 14:3003–3016
    [Google Scholar]
  131. Weir J. P., Moss B. 1983; Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. Journal of Virology 46:530–537
    [Google Scholar]
  132. Weir J. P., Moss B. 1984; Regulation of expression and nucleotide sequence of a late vaccinia virus gene. Journal of Virology 51:662–669
    [Google Scholar]
  133. Witter R., Menna A., Schümperli D., Stoffel S., Müller H. K., Wyler R. 1977; Hin dIII and Sst l restriction sites mapped on rabbit poxvirus and vaccinia virus DNA. Journal of Virology 23:669–678
    [Google Scholar]
  134. Witter R., Barbosa E., Cooper J. A., Garon C. F., Chan H., Moss B. 1980; Inverted terminal repetition in vaccinia virus DNA encodes early mRNAs. Nature, London 285:21–25
    [Google Scholar]
  135. Yamasaki K., Taga T., Hirat Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. 1988; Molecular structure of interleukin 6 receptor. Proceedings of the Japanese Academy 64:209–211
    [Google Scholar]
  136. Yuen L., Moss B. 1987; Oligonucleotide sequence signalling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of Sciences, U.S.A 84:6417–6421
    [Google Scholar]
  137. Zhao H. F., Simard J., Labrie C., Breton N., Rheaume E., Luu-The V. L., Labrie F. 1989; Molecular cloning, cDNA structure and predicted amino acid sequence of bovine 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4 isomerase. FEBS Letters 259:153–157
    [Google Scholar]
  138. Zhou J., Crawford L., McLean L., Sun X.-Y., Stanley M., Almond N., Smith G. L. 1990; Increased antibody responses to human papillomavirus type 16 LI protein expressed from recombinant vaccinia virus lacking serine protease inhibitor genes. Journal of General Virology 71:2185–2190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-6-1349
Loading
/content/journal/jgv/10.1099/0022-1317-72-6-1349
Loading

Data & Media loading...

Most cited Most Cited RSS feed