1887

Abstract

The complete nucleotide sequence of the gene encoding the matrix protein (M) of the porcine paramyxovirus LPMV has been determined. The gene is 1376 nucleotides long including 5′ and 3′ non-coding sequences with a protein-coding sequence of 1107 nucleotides. The deduced protein, containing 369 amino acids with a calculated of 41657, is hydrophobic overall with a net positive charge of +17.5. Comparative sequence analysis revealed high amino acid homology to other paramyxovirus M proteins, with the highest degree of identity (46%) with the human mumps virus. This is strong evidence that the porcine paramyxovirus LPMV is a genuine member of the paramyxovirus genus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-5-1045
1991-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/5/JV0720051045.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-5-1045&mimeType=html&fmt=ahah

References

  1. Appel M. 1987; Canine distemper virus. In Virus Infections of Carnivores vol 1 pp 133–159 Edited by Appel M. Amsterdam: Elsevier;
    [Google Scholar]
  2. Bellini W. J., Englund G., Richardson C. D., Rozenblatt S., Lazzarini R. A. 1986; Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. Journal of Virology 58:408–416
    [Google Scholar]
  3. Blumberg B. M., Rose K., Simona M. G., Roux L., Giorgi C., Kolakofsky D. 1984; Analysis of the Sendai virus M gene and protein. Journal of Virology 52:656–663
    [Google Scholar]
  4. Brandly C. A. 1964; Recognition of Newcastle disease virus as a new disease. In Newcastle Disease Virus: An Evolving Pathogen pp 53–64 Edited by Hanson R. P. Madison: University of Wisconsin Press;
    [Google Scholar]
  5. Büechi M., Bächi T. 1982; Microscopy of internal structures of Sendai virus associated with the cytoplasmic surface of the membranes. Virology 120:349–359
    [Google Scholar]
  6. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infection. Cell 55:255–265
    [Google Scholar]
  7. Chambers P., Millar N. S., Platt S. G., Emmerson P. T. 1986; Nucleotide sequence of the gene encoding the matrix protein of Newcastle disease virus. Nucleic Acids Research 14:9051–9061
    [Google Scholar]
  8. Coulon P., Deutsch V., Lafay F., Martinet-Edelist C., Wyers F., Herman R. C., Flamand A. 1990; Genetic evidence for multiple functions of the matrix protein of vesicular stomatitis virus. Journal of General Virology 71:991–996
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Elango N., Varsanyi T. M., Kӧvamees J., Norrby E. 1988; Molecular cloning and characterization of six genes, determination of gene order and intergenic sequences and leader sequence of mumps virus. Journal of General Virology 69:2893–2900
    [Google Scholar]
  11. Elliott G. D., Afzal M. A., Martin S. J., Rima B. K. 1989; Nucleotide sequence of the matrix, fusion and putative SH protein genes of mumps virus and their deduced amino acid sequences. Virus Research 12:61–75
    [Google Scholar]
  12. Hall W. W., Lamb R. A., Choppin P. W. 1979; Measles and subacute sclerosing panencephalitis virus protein: lack of antibodies to the M protein in patients with subacute sclerosing panencephalitis. Proceedings of the National Academv of Sciences, U.S.A 76:2047–2051
    [Google Scholar]
  13. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  14. Ito Y., Tsurudome M., Hishiyama M., Yamada A. 1987; Immunological interrelationships among human and non-human paramyxoviruses revealed by immunoprecipitation. Journal of General Virology 68:1289–1297
    [Google Scholar]
  15. Kilham L. 1949; Mumps meningoencephalitis with and without parotitis. American Journal of Diseases of Children 78:324–333
    [Google Scholar]
  16. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  17. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  18. Lenard J., Vanderoef R. 1990; Localization of the membrane-associated region of vesicular stomatitis virus M protein at the N terminus, using the hydrophobic, photoreactive probe 125ITID. Journal of Virology 64:3486–3491
    [Google Scholar]
  19. Limo M., Yilma T. 1990; Molecular cloning of the rinderpest virus matrix gene: Comparative sequence analysis with other paramyxoviruses. Virology 175:323–327
    [Google Scholar]
  20. Luk D., Masters P. S., Sanchez A., Banerjee A. K. 1987; Complete nucleotide sequence of the matrix protein mRNA and three intergenic junctions of human parainfluenza virus type 3. Virology 156:189–192
    [Google Scholar]
  21. Marx P. A., Portner A., Kingsbury D. W. 1974; Sendai virion transcriptase complex: polypeptide composition and inhibition by virion envelope proteins. Journal of Virology 13:107–112
    [Google Scholar]
  22. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–199
    [Google Scholar]
  23. Moreno-López J., Correa-Girón P., Martinez A., Ericsson A. 1986; Characterization of a paramyxovirus isolated from the brain of piglet in Mexico. Archives of Virology 91:221–231
    [Google Scholar]
  24. Morrison T. G. 1988; Structure, function, and intracellular processing of paramyxovirus membrane proteins. Virus Research 10:113–136
    [Google Scholar]
  25. Needleman S. B., Wunsch C. D. 1970; A general method applicable to search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  26. Nishio M., Tsurudome M., Bando H., Ito Y. 1990; Immunological relationships of simian virus 41 (SV41) to other paramyxoviruses and serological evidence of SV41 infection in human populations. Journal of General Virology 71:2093–2097
    [Google Scholar]
  27. Peeples M. E., Bratt M. A. 1984; Mutation in the matrix protein of Newcastle disease virus can result in decreased infectivity. Journal of Virology 51:81–90
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  29. Satake M., Venkatasan S. 1984; Nucleotide sequence of the gene encoding respiratory syncytial virus matrix protein. Journal of Virology 50:92–99
    [Google Scholar]
  30. Shaffer M. F., Rake G., Hodes H. L. 1942; Isolation of virus from a patient with a fatal encephalitis complicating measles. American Journal of Diseases of Children 64:815–819
    [Google Scholar]
  31. Sheshberadaran H., Lamb R. A. 1990; Sequence characterization of the membrane protein gene of paramyxovirus simian virus 5. Virology 176:234–243
    [Google Scholar]
  32. Shimizu K., Ishida N. 1975; The smallest protein of Sendai virus: its candidate function of binding nucleocapsid to envelope. Virologv 67:427–437
    [Google Scholar]
  33. Stephano H. A., Gay G. M., Ramirez T. C., Maqueda A. J. J. 1982; An outbreak of encephalitis in piglets produced by an hemagglutinating virus. Proceedings of the International Pig Veterinary Society Congress, Mexico p 153
    [Google Scholar]
  34. Stephano H. A., Gay G. M., Ramirez T. C. 1988; Encephalomyelitis, reproductive failure and corneal opacity (blue eye) in pigs, associated with a paramyxovirus infection. Veterinary Record 122:6–10
    [Google Scholar]
  35. Sundqvist A., Berg M., Hernandez-Jauregui P., Linné T., Moreno-Lopez J. 1990; The structural proteins of a porcine paramyxovirus (LPMV). Journal of General Virology 71:609–613
    [Google Scholar]
  36. Yoshida T., Nagai Y., Yoshi S., Maeno K., Matsumoto T. 1976; Membrane (M) protein of HVJ (Sendai virus): its role in virus assembly. Virology 71:143–161
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-5-1045
Loading
/content/journal/jgv/10.1099/0022-1317-72-5-1045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error