1887

Abstract

A virus-encoded protease that cleaves after multiple basic amino acid residues has been implicated in the processing of the flavivirus polyprotein. Recently, a computer search of amino acid residues which might form the active site of a protease led to the suggestion that the amino-terminal segment of the NS3 protein represents a serine protease. To examine this possibility we constructed an mRNA which encodes a polyprotein with an amino-terminal signal sequence derived from the influenza virus haemagglutinin, followed by a segment of the West Nile flavivirus polyprotein which includes the non-structural (NS) proteins NS2A, NS2B and the amino-terminal part of the NS3 protein. This polyprotein contains two sequences, located at the termini of the NS2B protein, which are cleaved by the viral protease that cleaves after multiple basic residues in the authentic polyprotein. The proteins that are generated by this mRNA during translation in the presence of rough endoplasmic reticulum membranes indicate that these two proteolytic cleavages occur translation of polyproteins shortened at the carboxy terminus shows that a polyprotein which does not contain the complete set of proposed catalytic residues present in the NS3 protein segment accumulates as a membrane-associated molecule without proteolytic processing. Similarly, substitution of residue histidine 51 of the NS3 polyprotein segment, which is predicted to be part of the protease catalytic centre, with an alanine residue, blocks the processing of the polyprotein .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-4-851
1991-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/4/JV0720040851.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-4-851&mimeType=html&fmt=ahah

References

  1. Bazan J. F., Fletterick R. J. 1989; Detection of a trypsin-like serine protease domain in fiaviviruses and pestiviruses. Virology 171:637–639
    [Google Scholar]
  2. Biedrzycka A., Cauchi M. R., Bartholomeusz A., Gorman J. J., Wright P. J. 1987; Characterization of protease cleavage sites involved in the formation of the envelope glycoprotein and three non-structural proteins of dengue virus type 2, New Guinea C strain. Journal of General Virology 68:1317–1326
    [Google Scholar]
  3. Boege U., Wengler G., Wengler G., Wittmann-Liebold B. 1981; Primary structures of the core proteins of the alphaviruses Semliki Forest virus and Sindbis virus. Virology 113:293–303
    [Google Scholar]
  4. Castle E., Wengler G. 1987; Nucleotide sequence of the untranslated part of the genome of the flavivirus West Nile virus. Archives of Virology 92:309–313
    [Google Scholar]
  5. Castle E., Nowak Th, Leidner U, Wengler G, Wengler G. 1985; Sequence analysis of the viral core protein and the membrane-associated proteins VI and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236
    [Google Scholar]
  6. Castle E., Leidner U., Nowak Th., Wengler G., Wengler G. 1985; Primary structure of the West Nile flavivirus genome regions coding for all nonstructural proteins. Virology 149:10–26
    [Google Scholar]
  7. Chambers T., McCourt D. W., Rice C. M. 1989; Yellow fever virus proteins NS2a, NS2b, and NS4b: identification and partial amino acid sequence analysis. Virology 169:100–109
    [Google Scholar]
  8. Chang J. Y., Brauer D., Wittmann-Liebold B. 1978; Microsequence analysis of peptides and proteins using 4-N, N-dimethylaminobenzene 4-isothiocyanate/phenylisothiocyanate double coupling method. FEBS Letters 93:205–214
    [Google Scholar]
  9. Färber P. M. 1990 In vitro-Synthese und Charakterisierung von biologisch aktiver mRNA aus klonierter cDNA des West Nil Flavivirus Genoms Ph.D. thesis Justus-Liebig-Universität Giessen;
    [Google Scholar]
  10. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989; N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research 17:3889–3897
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  12. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Preugschat F., Yao C. -W., Strauss J. H. 1990; In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology 64:4364–4374
    [Google Scholar]
  14. Rice C. M., Lenches E. M., Eddy R. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  15. Rice C. M., Aebersold R., Teplow D. B., Pata J., Bell J. R., Vorndam A. V., Trent D. W., Brandriss M. W., Schlesinger J. J., Strauss J. H. 1986; Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses. Virology 151:1–9
    [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  17. Speight G., Westaway E. G. 1989a; Positive identification of NS4A, the last of the hypothetical nonstructural proteins of flaviviruses. Virology 170:299–301
    [Google Scholar]
  18. Speight G., Westaway E. G. 1989b; Carboxy-terminal analysis of nine proteins specified by the flavivirus Kunjin: evidence that only the intracellular core protein is truncated. Journal of General Virology 70:2209–2214
    [Google Scholar]
  19. Speight G., Coia G., Parker M. D., Westaway E. G. 1988; Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Journal of General Virology 69:23–34
    [Google Scholar]
  20. Strauss J. H., Strauss E. G., Hahn C. S., Galler R., Hardy W. R., Rice C. M. 1987; Replication of alphaviruses and flaviviruses: proteolytic processing of polyproteins. In Positive Strand RNA Viruses pp 209–226 Edited by Brinton M. A., Rueckert R. R. New York: Alan R. Liss;
    [Google Scholar]
  21. Wengler G., Castle E., Leidner U., Nowak Th., Wengler G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274
    [Google Scholar]
  22. Wengler G., Wengler G., Nowak Th., Castle E. 1990; Description of a procedure which allows isolation of viral non-structural proteins from BHK vertebrate cells infected with the West Nile flavivirus in a state which allows their direct chemical characterization. Virology 177:795–801
    [Google Scholar]
  23. Westaway E. G. 1987; Flavivirus replication strategy. Advances in Virus Research 33:45–90
    [Google Scholar]
  24. Westaway E. G., Brinton M. A., Gaidamovich S. Y., Horzinek M. C., Igarashi A., Kääriäinen L., Lvov D. K., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Intervirology 24:183–193
    [Google Scholar]
  25. Winter G., Fields S., Brownlee G. G. 1981; Nucleotide sequence of a haemagglutinin of a human influenza virus H1 subtype. Nature, London 292:72–75
    [Google Scholar]
  26. Wright P. J., Cauchi M. R., Ng M. L. 1989; Definition of the carboxy termini of the three glycoproteins specified by dengue virus type 2. Virology 171:61–67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-4-851
Loading
/content/journal/jgv/10.1099/0022-1317-72-4-851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error