1887

Abstract

RNA 2 of the V strain of tomato aspermy virus (TAV) consists of 3074 nucleotides and contains one open reading frame of 2487 nucleotides. Thus, it resembles RNA 2 of cucumber mosaic virus (CMV) strains Q and Fny (62% identical to both), brome mosaic virus (42% identical) and cowpea chlorotic mottle virus (40% identical). In comparisons between amino acid sequences, three different regions of similarity could be distinguished. These were the central part (amino acids 224 to 757 for V-TAV), which was most similar among the four viruses, and the N and C ends; sequences conserved among RNA polymerase species were found in the C half of the central part. Hydrophobicity patterns, and distributions of acidic and basic amino acids in the proteins encoded by V-TAV RNA 2, Q-CMV RNA 2 and Fny-CMV RNA 2 were very similar except at the extreme ends of the molecules. Structures that have been reported to act as regulatory signals for minus- and plus-strand synthesis were found in the 5′ and 3′ non-coding regions of the RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-4-779
1991-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/4/JV0720040779.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-4-779&mimeType=html&fmt=ahah

References

  1. Allison R. F., Janda M., Ahlquist P. 1989; Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology 172:321–330
    [Google Scholar]
  2. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Research 16:9909–9916
    [Google Scholar]
  3. Bujarski J., Ahlquist P., Hall T. C., Dreher T. W., Kaesberg P. 1986; Modulation of replication, aminoacylation, and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3′ end. EMBO Journal 5:1769–1774
    [Google Scholar]
  4. Cornelissen B. J., Brederode F. T., Veeneman G. H., Boom J. H., Bol J. F. 1983; Complete nucleotide sequence of alfalfa mosaic virus RNA2. Nucleic Acids Research 11:3019–3025
    [Google Scholar]
  5. Dasgupta R., Harada F., Kaesberg P. 1976; Blocked 5′ termini in brome mosaic virus RNA. Journal of Virology 18:260–267
    [Google Scholar]
  6. De Borde D. C., Naeve C. W., Herlocher M. L., Maassab H. F. 1986; Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. Analytical Biochemistry 157:275–282
    [Google Scholar]
  7. Devergne J. C., Cardin L. 1975; Relations sérologiques entre cucumoviruses (CMV, PSV, TAV). Annates de Phytopathologie 7:255–276
    [Google Scholar]
  8. Dreher T. W., Hall T. C. 1988; Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. Journal of Molecular Biology 201:31–40
    [Google Scholar]
  9. Dreher T. W., Bujarski J. J., Hall T. C. 1984; Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities. Nature, London 311:171–175
    [Google Scholar]
  10. England T. E., Bruce A. G., Uhlenbeck O. C. 1980; Specific labeling of 3′ termini of RNA with T4 RNA ligase. Methods in Enzymology 65:65–74
    [Google Scholar]
  11. Gould A. R., Palukaitis P., Symons R. H., Mossop D. W. 1978; Characterization of a satellite RNA associated with cucumber mosaic virus. Virology 84:443–455
    [Google Scholar]
  12. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  13. Habili N., Francki R. I. B. 1974a; Comparative studies on tomato aspermy and cucumber mosaic viruses. I. Physical and chemical properties. Virology 57:392–401
    [Google Scholar]
  14. Habili N., Francki R. I. B. 1974b; Comparative studies on tomato aspermy and cucumber mosaic viruses. II. Virus stability. Virology 60:29–36
    [Google Scholar]
  15. Habili N., Francki R. I. B. 1974c; Comparative studies on tomato aspermy and cucumber mosaic viruses. III. Further studies on relationship and construction of a virus from part of the two viral genomes. Virology 61:443–449
    [Google Scholar]
  16. Harrison B. D., Mayo M. A., Baulcombe D. C. 1987; Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature, London 328:799–802
    [Google Scholar]
  17. Haseloff J., Symons R. H. 1981; Chrysanthemum stunt viroid: primary sequence and secondary structure. Nucleic Acids Research 9:2741–2752
    [Google Scholar]
  18. Hayes R. J., Buck K. W. 1990; Complete replication of the eucaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363–368
    [Google Scholar]
  19. Horikoshi M., Mise K., Furusawa I., Shishiyama J. 1988; Immunological analysis of brome mosaic virus replicase. Journal of General Virology 69:3081–3087
    [Google Scholar]
  20. Joshi R. L., Haenni A. L. 1986; Search for tRNA-like properties in tomato aspermy virus RNA. FEBS tetters 194:157–160
    [Google Scholar]
  21. Joshi R. L., Joshi S., Chapeville F., Haenni A. L. 1983; tRNA-like structures of plant viral RNAs: conformational requirements for adenylation and aminoacylation. EMBO Journal 2:1123–1127
    [Google Scholar]
  22. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  23. Kaper J. M., Tousignant M. E. 1977; Cucumber mosaic virus-associated RNA 5. I. Role of host plant and helper strain in determining amount of associated RNA5 with virions. Virology 80:186–195
    [Google Scholar]
  24. Kiberstis P. A., Loesch-Fries E. J., Hall T. C. 1981; Viral protein synthesis in barley protoplasts inoculated with native and fractionated brome mosaic virus RNA. Virology 112:804–808
    [Google Scholar]
  25. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  26. Landridge J., Landridge P., Berquist P. L. 1980; Extraction of nucleic acids from agarose gels. Analytical Biochemistry 103:264–271
    [Google Scholar]
  27. Lehto K., Dawson W. O. 1990; Changing the start codon context of the 30K gene of tobacco mosaic virus from ‘weak’ to ‘strong’ does not increase expression. Virology 174:169–176
    [Google Scholar]
  28. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Keru H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO Journal 6:43–48
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A teboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Marrou J., Quiot J. B., Marchoux G., Duteil M. 1975; Caractérisation par la symptomatologie de quatorze souches du virus de la mosaique du concombre et de deux autres cucumovïrus: tentative de classification. Mededelingen van de Faculteit Landbouw-wetenschappen, Rijksuniversiteit Gent 40:107–121
    [Google Scholar]
  31. Marsh L. E., Pogue G. P., Hall T. C. 1989; Similarities among plant virus (+) and (–) RNA termini imply a common ancestry with promoter of eukaryotic tRNAs. Virology 172:415–427
    [Google Scholar]
  32. Mossop D. W., Francki R. I. B. 1979; Comparative studies on two satellite RNAs of cucumber mosaic virus. Virology 95:395–404
    [Google Scholar]
  33. Nitta N., Takanami Y., Kuwata S., Kubo S. 1988; Inoculation with RNAs 1 and 2 of cucumber mosaic virus induces viral RNA replicase activity in tobacco mesophyll protoplasts. Journal of General Virology 69:2695–2700
    [Google Scholar]
  34. Pogue G. P., Marsh L. E., Hall T. C. 1990; Point mutations in the ICR2 motif of brome mosaic virus RNAs debilitate (+) strand replication. Virology 178:152–160
    [Google Scholar]
  35. Quadt R., Verbeek H. J. T., Jaspars E. M. J. 1988; Involvement of a nonstructural protein in the RNA synthesis of brome mosaic virus. Virology 165:256–261
    [Google Scholar]
  36. Rezaian M. A., Williams R. H., Gordon K., Gould A. R., Symons R. H. 1984; Nucleotide sequence of cucumber mosaic virus RNA 2 reveals a translation product significantly homologous to corresponding protein of other viruses. European Journal of Biochemistry 143:277–284
    [Google Scholar]
  37. Rezaian M. A., Williams R. H., Symons R. H. 1985; Nucleotide sequence of cucumber mosaic virus RNA 1. Presence of a sequence complementary to part of the viral satellite RNA and homologies with other viral RNAs. European Journal of Biochemistry 150:331–339
    [Google Scholar]
  38. Rietveld K., Pleij W. A., Bosch L. 1983; Three dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO Journal 2:1079–1085
    [Google Scholar]
  39. Rizzo T. M., Palukaitis P. 1988; Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 2. Journal of General Virology 69:1777–1787
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  41. Solis I., Garcia-Arenal F. 1990; The complete nucleotide sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic virus. Virology 177:553–558
    [Google Scholar]
  42. Wilson P. A., Symons R. H. 1981; The RNAs of cucumoviruses: 3′-terminal sequence analysis of two strains of tomato aspermy virus. Virology 112:342–345
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-4-779
Loading
/content/journal/jgv/10.1099/0022-1317-72-4-779
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error