1887

Abstract

In previous studies, the herpes simplex virus type 1 (HSV-1) mutant, 1814, which lacks the trans-inducing function of Vmw65, did not replicate in the trigeminal ganglia of mice following corneal inoculation but did establish a reactivatable latent infection in the ganglia 12 to 24 h after ocular infection. Since 1814 did not replicate , the molecular events during the establishment phase of latent HSV-1 infection could be characterized without the complications of concurrent productive viral infection. In comparison to parental HSV-1 strain 17, the expression of viral immediate early (IE), early and late genes and the levels of viral DNA in the trigeminal ganglia of mice following 1814 infection were greatly reduced. However, accumulation of latency-associated transcripts, a prominent feature of latent HSV-1 infection, occurred in a wild-type fashion. Furthermore, low levels of viral gene expression and an increase in the level of viral DNA in the 1814-infected ganglia were not detected until 1 to 2 days after the establishment of HSV-1 latency. Thus, IE gene expression and replication of viral DNA in the trigeminal ganglia are not prerequisites for the establishment of HSV-1 latency. These results suggest that the pathways leading to productive and latent infections in neurons may diverge at an early stage of the host-HSV-1 interaction and that the level of viral IE gene expression has a key role in determining the outcome of infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-3-641
1991-03-01
2022-10-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/3/JV0720030641.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-3-641&mimeType=html&fmt=ahah

References

  1. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. 1989; Construction and characterization of a herpes simplex virus type 1 mutant unable to trans-induce immediate early gene expression. Journal of Virology 63:2260–2269
    [Google Scholar]
  2. Baichwal V. R., Sugden B. 1988; Latency comes of age for herpesviruses. Cell 52:787–789
    [Google Scholar]
  3. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. Journal of Virology 46:371–377
    [Google Scholar]
  4. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a lineage map. Journal of General Virology 18:329–346
    [Google Scholar]
  5. Campbell M. E. M., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a transacting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  6. Clements G. B., Stow N. D. 1989; A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice. Journal of General Virology 70:2501–2506
    [Google Scholar]
  7. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe K. M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proceedings of the National Academy of Sciences, U.S.A 86:4736–4740
    [Google Scholar]
  8. Cook M. L., Bastone V. B., Stevens J. B. 1974; Evidence that neurons harbor latent herpes simplex virus. Infection and Immunity 9:946–951
    [Google Scholar]
  9. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. 1987; Latent herpes simplex virus in human trigeminal ganglia: detection of an immediate early gene “antisense” transcript by in situ hybridization. New England Journal of Medicine 317:1427–1432
    [Google Scholar]
  10. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. 1987; RNA from an immediate early region of the HSV-1 genome is present in the trigeminal ganglia of latently infected mice. Proceedings of the National Academy of Sciences, U.S.A 84:3204–3208
    [Google Scholar]
  11. Deatly A. M., Spivack J. G., Lavi E., O’Boyle D. R., Fraser N. W. 1988; Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissue of mice map to similar regions of the viral genome. Journal of Virology 62:749–756
    [Google Scholar]
  12. Deshmane S., Fraser N. W. 1989; During latency, herpes simplex virus type-1 DNA is associated with nucleosomes in a chromatin structure. Journal of Virology 63:943–947
    [Google Scholar]
  13. Efstathiou S., Minson C., Field H. J., Anderson J. R., Wildly P. 1986; Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans. Journal of Virology 57:446–455
    [Google Scholar]
  14. Enquist L. W., Madden M. J., Schiop-Stansly P., Vande Woude G. F. 1979; Cloning of herpes simplex type 1 DNA fragments in a bacteriophage lambda vector. Science 203:541–544
    [Google Scholar]
  15. Fraser N. W., Deatly A. M., Mellerick D. M., Muggeridge M. I., Spivack J. G. 1986; Molecular biology of latent HSV-1. In Human Herpes Virus Infections II. Viral Glycoproteins and Immunobiology pp 39–54 Edited by Lopez C., Roizman B. New York: Raven Press;
    [Google Scholar]
  16. Frink R. J., Anderson K. P., Wagner E. K. 1981; Herpes simplex type 1 Hin dIII fragment L encodes spliced and complementary mRNA species. Journal of Virology 39:559–572
    [Google Scholar]
  17. Goding C. R., O’Hare P. 1989; Herpes simplex virus Vmw65-octamer binding protein interaction: a paradigm for combinatorial control of transcription. Virology 173:363–367
    [Google Scholar]
  18. Hill T. J. 1985; Herpes simplex virus latency. In The Herpesviruses vol 3 pp 175–240 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  19. Ho D. Y., Mocarski E. S. 1988; β-Galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virology 167:279–283
    [Google Scholar]
  20. Kafatos F. C., Jones C. W., Efstratiadis A. 1979; Determination of nucleic acid sequence homologies and relative concentrations by a dot blot hybridization procedure. Nucleic Acids Research 7:1541–1552
    [Google Scholar]
  21. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989; Immediateearlygene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  22. Longnecker R., Roizman B. 1986; Generation of an inverting herpes simplex virus 1 mutant lacking the L-S junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein E and the alpha 47 gene. Journal of Virology 58:583–591
    [Google Scholar]
  23. Mclennan J. L., Darby G. 1980; Herpes simplex virus latency: the cellular location of virus in dorsal root ganglia and the fate of the infected cells following virus activation. Journal of General Virology 51:233–243
    [Google Scholar]
  24. Mavromarta-Nazos P., Roizman B. 1986; Construction and properties of a viable herpes simplex virus I recombinant lacking the coding sequences of the alpha 47 gene. Journal of Virology 60:807–812
    [Google Scholar]
  25. Mellerick D. M., Fraser N. W. 1987; Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158:265–275
    [Google Scholar]
  26. Mitchell W. J., Liretre R. P., Fraser N. W. 1990; Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. Journal of General Virology 71:125–132
    [Google Scholar]
  27. Morahan P. S., Mama S., Anaraki F., Leary K. 1989; Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type I. Journal of Virology 63:2300–2307
    [Google Scholar]
  28. Perry L. J., Mcgeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  29. Post L. E., Conley A. J., Mocarski E. S., Roizman B. 1980; Cloning of reiterated and nonreiterated herpes simplex virus 1 sequences as Bam HI fragments. Proceedings of the National Academy of Sciences, U.S.A. 77:4201–4205
    [Google Scholar]
  30. Preston C. M., Coroingley M. G., Stow N. D. 1984; Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate early gene. Journal of Virology 50:708–716
    [Google Scholar]
  31. Rock D. L., Fraser N. W. 1983; Detection of HSV-1 genome in the central nervous system of latently infected mice. Nature, London 302:523–525
    [Google Scholar]
  32. Rock D. L., Fraser N. W. 1985; Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. Journal of Virology 55:849–852
    [Google Scholar]
  33. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., WECrlSLER S. L. 1987; Detection of latency related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  34. Romman B., Sears A. E. 1987; An inquiry into the mechanisms of herpes simplex virus latency. Annual Review of Microbiology 41:543–571
    [Google Scholar]
  35. Sears A. E., Halliburton I. W., Meigner B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency. Journal of Virology 55:338–346
    [Google Scholar]
  36. Spivack J. G., FamEs N. W. 1987; Detection of herpes simplex type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  37. Spivack J. G., Fraser N. W. 1988; Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. Journal of Virology 62:1479–1485
    [Google Scholar]
  38. Steiner I., Spivack J. G., O’boyle D., Lavi E., Fraser N. W. 1988; Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. Journal of Virology 62:3493–3496
    [Google Scholar]
  39. Steiner I., Spivack J. G., Deshmane S. L., Ace C. I., Preston C. M., Fraser N. W. 1990; A herpes simplex virus type 1 mutant containing a non-trans-inducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. Journal of Virology 64:1630–1638
    [Google Scholar]
  40. Stevens J. G. 1989; Human herpesviruses: a consideration of the latent state. Microbiological Reviews 53:318–332
    [Google Scholar]
  41. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  42. Stevens J. G., Haarr L., Porter D., Cook M. L., Wagner E. K. 1988; Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. Journal of Infectious Diseases 158:117–123
    [Google Scholar]
  43. Stow N. D., Stow E. C. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmwl 10. Journal of General Virology 67:2571–2585
    [Google Scholar]
  44. Tenser R. B., Hay K. A., Edris W. A. 1989; Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type-1. Journal of Virology 63:2861–2865
    [Google Scholar]
  45. Yao F., Courtney R. J. 1989; A major transcriptional regulatory protein (ICP4) of herpes simplex virus type 1 is associated with purified virions. Journal of Virology 63:3338–3344
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-3-641
Loading
/content/journal/jgv/10.1099/0022-1317-72-3-641
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error