1887

Abstract

Passive administration of neutralizing monoclonal antibody (MAb) to glycoprotein H (gH) of herpes simplex virus type 1 (HSV-1) was found to protect mice from an HSV-1 strain SC16 challenge infection. To investigate further the protective potential of gH, recombinant vaccinia viruses were constructed which expressed the HSV-1 gH open reading frame under the control of the vaccinia virus 7.5K early/late promoter or the 4b late promoter. Immunization with recombinant viruses, however, did not induce the production of neutralizing antisera and the mice were not protected from zosteriform spread or the establishment of latent infection following viral challenge. The gH produced by the recombinant vaccinia viruses differed in electrophoretic mobility and antigenicity from authentic HSV-1 gH. Only one of three neutralizing MAbs specific for conformational epitopes on gH was able to immunoprecipitate gH synthesized in recombinant vaccinia virus-infected cells. In addition cell surface expression of gH was not detected in cells infected with the recombinant vaccinia viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-2-369
1991-02-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/2/JV0720020369.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-2-369&mimeType=html&fmt=ahah

References

  1. Balachandran N., Bacchetti S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infection and Immunity 37:1132–1137
    [Google Scholar]
  2. Belshe R. B., Hall-Smith M., Hall C. B., Betts R., Hay A. J. 1988; Genetic basis of resistance to rimantidine emerging during treatment of influenza virus infection. Journal of Virology 62:1508–1512
    [Google Scholar]
  3. Berman P. W., Gregory T., Crase D., Laskey L. A. 1985; Protection from genital herpes simplex virus type 2 infection by vaccination with cloned type 1 glycoprotein D. Science 227:1490–1492
    [Google Scholar]
  4. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  5. Blacklaws B. A., Krishna S., Minson A. C., Nash A. A. 1990; Immunogenicity of herpes simplex virus type 1 glycoproteins expressed in vaccinia virus recombinants. Virology 177:727–736
    [Google Scholar]
  6. Buckmaster E. A., Gompels U., Minson A. C. 1984; Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413
    [Google Scholar]
  7. Cai W., Baohua G., Person S. 1988; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  8. Cantin E. M., Eberle R., Baldick J. L., Moss B., Willey D. E., Notkins A. L., Openshaw H. 1987; Expression of herpes simplex virus 1 glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal herpes simplex virus 1 infection. Proceedings of the National Academy of Sciences, U,. S,. A 84:5908–5912
    [Google Scholar]
  9. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cesny R., Horsnell T., Hutchinson C. A., Kouzarides T., Martignetti J. A., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; An analysis of the protein coding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  10. Cochran M. A., Puckett C., Moss B. 1985; In vitro mutagenesis of the promoter region of a vaccinia virus gene: evidence for tandem early and late regulatory signals. Journal of Virology 54:30–37
    [Google Scholar]
  11. Cranage M. P., McLean C. S., Buckmaster E. A., Minson A. C., Wildy P., Coombs R. R. A. 1983; The use of monoclonal antibodies in reverse passive haemagglutination tests for herpes simplex antigens and antibodies. Journal of Medical Virology 11:295–306
    [Google Scholar]
  12. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralising antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  13. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson A. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII and herpes simples virus type 1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  14. Cremer K. J., Mackett M., Wohlenberg C., Notkins A. L., Moss B. 1985; Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science 228:737–740
    [Google Scholar]
  15. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  16. Desai P. J., Schaffer P. A., Minson A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  17. Gompels U., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  18. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. Journal of General Virology 63:4744–4755
    [Google Scholar]
  19. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  20. Hay A. J., Wolstenholme A. J., Skehel J. J., Hall-Smith M. 1985; The molecular basis of the specific anti-influenza action of amantadine. EMBO Journal 4:3021–3024
    [Google Scholar]
  21. Heineman T., Gong M., Sample J., Kieff E. 1988; Identification of the Epstein-Barr virus gp85 gene. Journal of Virology 62:1101–1107
    [Google Scholar]
  22. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. Journal of General Virology 28:341–353
    [Google Scholar]
  23. Keller P. M., Davison A. J., Lowe R. S., Riemen M. W., Ellis R.W. 1987; Identification and sequence of the gene encoding gpIII, a major glycoprotein of varicella-zoster virus. Virology 157:526–533
    [Google Scholar]
  24. Krishna S., Blacklaws B. A., Overton H. A., Bishop D. H. L., Nash A. A. 1989; Expression of glycoprotein D of herpes simplex virus type 1 in a recombinant baculovirus: protective responses and T cell recognition of the recombinant-infected cell extracts. Journal of General Virology 70:1805–1814
    [Google Scholar]
  25. Kunkel T. A. 1985; Rapid and efficient site specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences U.S.A 82:488–492
    [Google Scholar]
  26. Ligas M. W., Johnson D. C. 1988; A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. Journal of Virology 62:1486–1494
    [Google Scholar]
  27. Long D., Madara T. J., Ponce De Leon M., Cohen G. H., Montgomery P. C., Eisenberg R. J. 1984; Glycoprotein D protects mice against lethal challenge with herpes simplex virus types 1 and 2. Infection and Immunity 43:761–764
    [Google Scholar]
  28. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D. M., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  29. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  30. Martin S., Cantin E., Rouse B. T. 1989; Evaluation of antiviral immunity using vaccinia virus recombinants expressing cloned genes for herpes simplex virus type 1 glycoproteins. Journal of General Virology 70:1359–1370
    [Google Scholar]
  31. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology 62:2366–2372
    [Google Scholar]
  32. Minson A. C., Hodgman T. C., Digard P., Hancock D. C., Bell S.E., Buckmaster E. A. 1986; An analysis of the biological properties of monoclonal antibodies against glycoprotein D of herpes simplex virus and identification of amino acid substitutions that confer resistance to neutralization. Journal of General Virology 67:1001–1013
    [Google Scholar]
  33. Moss B., Rosenblum E. N. 1973; Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. Journal of Molecular Biology 81:267–269
    [Google Scholar]
  34. Nash A. A., Leung K. -N., Wildy P. 1985; The T-cell-mediated immune response of mice to herpes simplex virus. In The Herpesviruses vol 4 pp. 87–102 Edited by Roizman , Lopez C. New York: Plenum Press;
    [Google Scholar]
  35. Noble A. G., Lee G. T. Y., Sprague R., Parish M. L., Spear P. G. 1983; Anti gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1. Virology 129:218–224
    [Google Scholar]
  36. Rohrmann G., Yuen L., Moss B. 1986; Transcription of vaccinia virus early genes by enzymes isolated from vaccinia virions terminates downstream of a regulatory sequence. Cell 46:1029–1035
    [Google Scholar]
  37. Rosel J. L., Moss B. 1985; Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. Journal of Virology 56:830–838
    [Google Scholar]
  38. Rosel J. L., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational start sites of vaccinia virus late genes deduced by structural and functional analysis of the Hin dIII H genome fragment. Journal of Virology 60:436–449
    [Google Scholar]
  39. Showalter S. D., Zweig M., Hampar B. 1981; Monoclonal antibodies to herpes simples virus type 1 proteins, including the immediate-early protein ICP4. Infection and Immunity 534:684–692
    [Google Scholar]
  40. Simmons A., Nash A. A. 1984; Zosteriform spread of herpes simplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease. Journal of Virology 52:816–821
    [Google Scholar]
  41. Simmons A., Nash A. A. 1985; Role of antibody in primary and recurrent herpes simplex virus infection. Journal of Virology 53:944–948
    [Google Scholar]
  42. Simmons A., Nash A. A. 1987; The effect of B cell suppression on primary infection and re-infection of mice with herpes simplex virus. Journal of Infectious Diseases 115:649–654
    [Google Scholar]
  43. Sydiskis R. J., Schultz I. 1965; Herpes simplex skin infection in mice. Journal of Infectious Diseases 115:237–246
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-2-369
Loading
/content/journal/jgv/10.1099/0022-1317-72-2-369
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error