Stable expression of rabies virus glycoprotein in Chinese hamster ovary cells Free

Abstract

The rabies virus glycoprotein (G protein) has several important functions and is a major antigenic stimulus of the host immune system following rabies virus infection or vaccination. We developed a model system for studying the role of -linked glycosylation in the intracellular transport and antigenicity of this molecule. The full-length cDNA of the G protein of the ERA strain of rabies virus was inserted into the eukaryotic shuttle vector pSG5 and then stably transfected into wild-type Chinese hamster ovary (CHO) cells and mutant CHO cell lines defective in glycosylation. Transfected wild-type CHO cells expressed the G protein (detected by immunofluorescence) on the cell surface in a manner similar to rabies virus-infected cells. The transfected wild-type CHO cells were shown by immunoprecipitation to produce a protein of 67K that comigrated with the fully glycosylated G protein isolated from virus-infected cells or purified virions. Treatment of the transfected cell lines with tunicamycin completely blocked surface expression and resulted in the intracellular accumulation of the G protein, suggesting that the presence of -linked oligosaccharides is important for transport of this glycoprotein to the plasma membrane. The G protein cDNA was also expressed in the lectin-resistant CHO cell lines Lec 1, Lec 2 and Lec 8. In these cells initial -linked glycosylation does occur, but later steps in processing of the oligosaccharides are blocked. In each case, the G protein was expressed on the surface of lectin-resistant CHO cells in a similar manner to expression on wild-type CHO cells. This suggests that various different -linked oligosaccharide structures support intracellular transport of this glycoprotein. Thus, stably transfected CHO cell lines will provide a useful model system for further studies of the role of -linked glycosylation in trafficking and antigenicity of the rabies virus G protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-2-359
1991-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/2/JV0720020359.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-2-359&mimeType=html&fmt=ahah

References

  1. Anilionis A., Wunner W. H., Curtis P. J. 1981; Struture of the glycoprotein gene in rabies virus. Nature, London 294:275–278
    [Google Scholar]
  2. Basak S., Compans R. W. 1983; Studies on the role of glycosylation in the functions and antigenic properties of influenza virus glycoproteins. Virology 128:77–91
    [Google Scholar]
  3. Bunschoten H., Klapmuts R. J., Claassen I. J. T. M., Reyneveld S. D., Osterhaus A. D. M. E., Uytdehaag F. G. C. M. 1989; Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein. Journal of General Virology 70:1513–1521
    [Google Scholar]
  4. Celis E., Karr R. W., Dietzschold B., Wunner W. H., Koprowski H. 1988a; Genetic restriction and fine specificity of human T cell clones reactive with rabies virus. Journal of Immunology 141:2721–2728
    [Google Scholar]
  5. Celis E., Ou D., Dietzschold B., Koprowski H. 1988b; Recognition of rabies and rabies-related viruses by T cells derived from human vaccine recipients. Journal of Virology 62:3128–3134
    [Google Scholar]
  6. Clark H. F., Parks N. F., Wunner W. H. 1981; Defective interfering particles of fixed rabies viruses: lack of correlation with attenuation or auto-interference in mice. Journal of General Virology 52:245–258
    [Google Scholar]
  7. Cox J. H., Dietzschold B., Schneider L. G. 1977; Rabies virus glycoprotein. II. Biological and serological characterization. Infection and Immunity 16:754–759
    [Google Scholar]
  8. Dietzschold B. 1977; Oligosaccharides of the glycoprotein of rabies virus. Journal of Virology 23:286–293
    [Google Scholar]
  9. Dietzschold B., Cox J. H., Schneider L. G., Wiktor T. J., Koprowski H. 1978; Isolation and purification of a polymeric form of the glycoprotein of rabies virus. Journal of General Virology 40:131–139
    [Google Scholar]
  10. Dietzschold B., Rupprecht C. E., Tollis M., Lafon M., Mattei J., Wiktor T. J., Koprowski H. 1988; Antigenic diversity of the glycoprotein and nucleocapsid proteins of rabies and rabies-related viruses: implications for epidemiology and control of rabies. Reviews of Infectious Diseases 10:5785–5798
    [Google Scholar]
  11. Eager K. B., Hackett C. J., Gerhard W. U., Bennink J., Eisenlohr L. C., Yewdell J., Ricciardi R. P. 1989; Murine cell lines stably expressing the influenza virus hemagglutinin gene introduced by a recombinant retrovirus vector are constitutive targets for MHC class I- and class II-restricted T lymphocytes. Journal of Immunology 143:2328–2335
    [Google Scholar]
  12. Flamand A., Wiktor T. J., Koprowski H. 1980; Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins. II. The glycoprotein. Journal of General Virology 48:105–109
    [Google Scholar]
  13. Gibson R., Leavitt R., Kornfeld S., Schlesinger S. 1978; Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell 13:671–679
    [Google Scholar]
  14. Green S., Issemann I., Sheer E. 1988; A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Research 16:369
    [Google Scholar]
  15. Iwasaki Y., Wiktor T. J., Koprowski H. 1973; Early events of rabies virus replication in tissue cultures: an electron microscopic study. Laboratory Investigation 28:142–148
    [Google Scholar]
  16. Kieny M. P., Lathe R. F., Drillien R., Spehner D., Skory S., Schmitt D., Wiktor T., Koprowski H., Lecocq J. P. 1984; Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature, London 312:163–166
    [Google Scholar]
  17. Kotwal G. J., Buller R. M. C., Wunner W. H., Pringle C. R., Ghosh H. P. 1986; Role of glycosylation in transport of vesicular stomatitis virus envelope glycoprotein. Journal of Biological Chemistry 261:8936–8943
    [Google Scholar]
  18. Lafon M., Wiktor T. J., Macfarlan R. I. 1983; Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. Journal of General Virology 64:843–851
    [Google Scholar]
  19. Lafon M., Ideler J., Wunner W. H. 1984; Investigation of the antigenic structure of rabies virus glycoprotein by monoclonal antibodies. Developments in Biological Standardization 57:219–225
    [Google Scholar]
  20. Leavitt R., Schlesinger S., Kornfeld S. 1977; Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis and Sindbis virus. Journal of Biological Chemistry 252:9018–9023
    [Google Scholar]
  21. Lecocq J. P., Kieny M. P., Lemoine Y., Drillien R., Wiktor T., Koprowski H., Lathe R. 1985; New rabies vaccines: recombinant DNA approaches. In World’s Debt to Pasteur pp. 259–271 Edited by Koprowski H., Plotkin S. A. New York: Alan R. Liss;
    [Google Scholar]
  22. Lodmell D. L., Ewalt L. C. 1987; Immune sera and antiglycoprotein monoclonal antibodies inhibit in vitro cell-to-cell spread of pathogenic rabies viruses. Journal of Virology 61:3314–3318
    [Google Scholar]
  23. Machamer C. E., Rose J. K. 1988a; Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. Journal of Biological Chemistry 263:5948–5954
    [Google Scholar]
  24. Machamer C. E., Rose J. K. 1988b; Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding. Journal of Biological Chemistry 263:5955–5960
    [Google Scholar]
  25. Machamer C. E., Florkiewicz R. Z., Rose J. K. 1985; A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Molecular and Cellular Biology 5:3074–3083
    [Google Scholar]
  26. Mifune K., Ohuchi M., Mannen K. 1982; Hemolysis and cell fusion of rhabdoviruses. FEBS Letters 137:293–297
    [Google Scholar]
  27. Morgeaux S., Joffret M. -L., Leclerc C., Sureau P., Perrin P. 1989; Evaluation of the induction of specific cytotoxic T lymphocytes following immunization of F1 hybrid mice with rabies antigens. Research in Virology 140:193–206
    [Google Scholar]
  28. Norrild B., Pedersen B. 1982; Effect of tunicamycin on the synthesis of herpes simplex virus type 1 glycoproteins and their expression on the cell surface. Journal of Virology 43:395–402
    [Google Scholar]
  29. Perrin P., Portnoi D., Sureau P. 1982; Etude de l’adsorption et de la penetration du virus rabique: interactions avec les cellules BHK 21 et des membranes artificielles. Annales de l’Institut Pasteur, Virologie 133E:403–422
    [Google Scholar]
  30. Pizer L. I., Cohen G. H., Eisenberg R. J. 1980; Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. Journal of Virology 34:142–153
    [Google Scholar]
  31. Prehaud C., Coulon P., Lafay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology 62:1–7
    [Google Scholar]
  32. Prehaud C., Takehara K., Flamand A., Bishop D. H. L. 1989; Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology 173:390–399
    [Google Scholar]
  33. Reagan K. J., Wunner W. H. 1984; Early interaction of rabies virus with cell surface receptors. In Nonsegmented Negative Strand Viruses pp. 387–392 Edited by Bishop D. H. L., Compans R. W. New York: Academic Press;
    [Google Scholar]
  34. Robertson M. A., Etchison J. R., Robertson J. S., Summers D. F., Stanley P. 1978; Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells. Cell 13:515–526
    [Google Scholar]
  35. Rose J. K., Bergmann J. E. 1982; Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eucaryotic cells. Cell 30:753–762
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd. edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schlumberger H. D., Schneider L. G., Kulas H. D., Diringer H. 1973; Gross chemical composition of strain Flury HEP rabies virus. Zeitschrift für Naturforschung 28C:103–104
    [Google Scholar]
  38. Seif I., Coulon P., Rollin P. E., Flamand A. 1985; Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. Journal of Virology 53:924–936
    [Google Scholar]
  39. Smith J. S., Sumner J. W., Roumillat L. F. 1984; Enzyme immunoassay for rabies antibody in hybridoma culture fluids and its application to differentiation of street and laboratory strains of rabies virus. Journal of Clinical Microbiology 19:267–272
    [Google Scholar]
  40. Sodora D. L., Cohen G. H., Eisenberg R. J. 1989; Influence of asparagine linked oligosaccharides on antigenicity, processing, and cell surface expression of herpes simplex virus type 1 glycoprotein D. Journal of Virology 63:5184–5193
    [Google Scholar]
  41. Sokol F., Stancek D., Koprowski H. 1971; Structural proteins of rabies virus. Journal of Virology 7:241–249
    [Google Scholar]
  42. Southern P. J., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV40 early region promoter. Journal of Molecular and Applied Genetics 1:327–341
    [Google Scholar]
  43. Stanley P., Caillibot V., Siminovich L. 1975; Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cells. Cell 6:121–128
    [Google Scholar]
  44. Vidal S., Mottet G., Kolakofsky D., Roux L. 1989; Addition of high-mannose sugars must precede disulfide bond formation for proper folding of Sendai virus glycoproteins. Journal of Virology 63:892–900
    [Google Scholar]
  45. Wiktor T. J., Koprowski H. 1978; Monoclonal antibodies against rabies virus produced by somatic cell hybridization: detection of antigenic variants. Proceedings of the National Academy of Sciences, U.S.A. 75:3938–3942
    [Google Scholar]
  46. Wiktor T. J., Cohen G. H., Schlumberger H. D., Sokol F., Koprowski H. 1973; Antigenic properties of rabies virus components. Journal of Immunology 110:269–276
    [Google Scholar]
  47. Wiktor T. J., Macfarlan R. I., Reagan K. J., Dietzschold B., Curtis P. J., Wunner W. H., Kieny M. P., Lathe R., Lecocq J. P., Mackett M., Moss B., Koprowski H. 1984; Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proceedings of the National Academy of Sciences, U.S.A 81:7194–7198
    [Google Scholar]
  48. Wunner W. H. 1987; Rabies viruses - pathogenesis and immunity. In The Rhabdoviruses pp. 361–426 Edited by Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  49. Wunner W. H., Curtis P. J., Wiktor T. J. 1980; Rabies mRNA translation in Xenopus laevis oocytes. Journal of Virology 36:133–142
    [Google Scholar]
  50. Wunner W. H., Dietzschold B., Curtis P. J., Wiktor T. J. 1983; Rabies subunit vaccines. Journal of General Virology 64:1649–1656
    [Google Scholar]
  51. Wunner W. H., Reagan K. J., Koprowski H. 1984; Characterization of saturable binding sites for rabies virus. Journal of Virology 50:691–697
    [Google Scholar]
  52. Wunner W. H., Dietzschold B., Smith C. L., Lafon M., Golub E. 1985; Antigenic variants of CVS rabies virus with altered glycosylation sites. Virology 140:1–12
    [Google Scholar]
  53. Yelverton E., Norton S., Obijeski J. F., Goeddel D. V. 1983; Rabies virus glycoprotein analogs: biosynthesis in Escherichia coli . Science 219:614–619
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-2-359
Loading
/content/journal/jgv/10.1099/0022-1317-72-2-359
Loading

Data & Media loading...

Most cited Most Cited RSS feed