1887

Abstract

We report the determination of the DNA sequence of the long repeat (R) region and adjacent parts of the long unique (U) region in the genome of herpes simplex virus type 2 (HSV-2) strain HG52. The DNA sequences and genetic content of the extremities of HSV-2 U were found to be closely similar to those determined previously for HSV-1. The 5658 bp sequenced at the left end of HSV-2 U contained coding regions for genes UL1 to UL4 plus part of UL5. The 4355 bp sequenced at the right end of U contained coding regions for part of gene UL53, and the whole of genes UL54 to UL56. Comparison of the HSV-1 and HSV-2 UL56 sequences led to a correction in the published HSV-1 UL56 reading frame. The HSV-2 R region, including one copy of the sequence, was determined to be 9263 bp, with a base composition of 75.4% G+C and with many repetitive sequence elements. In HSV-2 R, sequences were identified corresponding to HSV-1 genes encoding the immediate early IE110 (ICP0) transcriptional regulator and the ICP34.5 neurovirulence factor; the former HSV-2 gene was proposed to contain two introns, and the latter one intron. Downstream of the HSV-2 immediate early gene, the R sequence encoding the latency-associated transcripts (LATs) was found to be dissimilar to that in HSV-1; the probable LAT promoter regions, however, showed similarities to HSV-1. Properties of the LAT sequences in both HSV-1 and HSV-2 were consistent with LATs being generated as an intron excised from a longer transcript.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-12-3057
1991-12-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/12/JV0720123057.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-12-3057&mimeType=html&fmt=ahah

References

  1. Ackermann M., Chou J., Sarmiento M., Lerner R. A., Roizman B. 1986; Identification by antibody to a synthetic peptide of a protein specified by a diploid gene located in the terminal repeats of the L component of herpes simplex virus genome. Journal of Virology 58:843–850
    [Google Scholar]
  2. Bankier A. T., Barrell B. G. 1989; Sequencing single-stranded DNA using the chain-termination method. In Nucleic Acid Sequencing: A Practical Approach pp 37–78 Edited by Howe C. J., Ward E. S. Oxford & New York: IRL Press;
    [Google Scholar]
  3. Batchelor A. H., O′Hare P. 1990; Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. Journal of Virology 64:3269–3279
    [Google Scholar]
  4. Chou J., Roizman B. 1986; The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. Journal of Virology 57:629–637
    [Google Scholar]
  5. Chou J., Roizman B. 1990; The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn+ . Journal of Virology 64:1014–1020
    [Google Scholar]
  6. Chou J., Kern E. R., Whitley R. J., Roizman B. 1990; Mapping of herpes simplex virus-1 neurovirulence to γ1 34.5, a gene nonessential for growth in culture. Science 250:1262–1265
    [Google Scholar]
  7. Curran J., Kolakofsky D. 1988; Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO Journal 7:245–251
    [Google Scholar]
  8. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Dobson A. T., Sederati F., Devi-Rao G., Flanagan W. M., Farrell M. J., Stevens J. G., Wagner E. K., Feldman L. T. 1989; Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. Journal of Virology 63:3844–3851
    [Google Scholar]
  11. Doerig C., Pizer L. I., Wilcox C. L. 1991; An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. Journal of Virology 65:2724–2727
    [Google Scholar]
  12. Draper K. G., Devi-Rao G., Costa R. H., Blair E. D., Thompson R. L., Wagner E. K. 1986; Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins. Journal of Virology 57:1023–1036
    [Google Scholar]
  13. Everett R. D. 1988; Analysis of the functional domains of herpes simplex virus type 1 immediate-early polypeptide Vmwl 10. Journal of Molecular Biology 202:87–96
    [Google Scholar]
  14. Everett R. D., Preston C. M., Stow N. D. 1991; Functional and genetic analysis of the role of Vmwl 10 in herpes simplex virus replication. In Herpesvirus Transcription and its Regulation pp 49–76 Edited by Wagner E. K. Boca Raton: CRC Press;
    [Google Scholar]
  15. Farrell M. J., Dobson A. T., Feldman L. T. 1991; Herpes simplex virus latency-associated transcript is a stable intron. Proceedings of the National Academy of Sciences, U. S. A. 88:790–794
    [Google Scholar]
  16. Freemont P. S., Hanson I. M., Trowsdale J. 1991; A novel cysteine-rich sequence motif. Cell 64:483–484
    [Google Scholar]
  17. Gupta K. C., Patwardhan S. 1988; ACG, the initiator codon for a Sendai virus protein. Journal of Biological Chemistry 263:8553–8556
    [Google Scholar]
  18. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  19. Little S. P., Schaffer P. A. 1981; Expression of the syncytial (syn) phenotype in HSV-1, strain KOS: genetic and phenotype studies of mutants in two syn loci. Virology 112:686–702
    [Google Scholar]
  20. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  21. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986; Complete DN A sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  22. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the Hin dIII I region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  23. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  24. Mackem S., Roizman B. 1982; Structural features of the herpes simplex virus a gene 4, 0 and 27 promoter-regulatory sequences which confer regulation on chimeric thymidine kinase genes. Journal of Virology 44:939–949
    [Google Scholar]
  25. McLauchlan J., Clements J. B. 1983; DNA sequence homology between two colinear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  26. Mitchell W. J., Deshmane S. L., Dolan A., McGeoch D. J., Fraser N. W. 1990a; Characterization of herpes simplex virus type II transcription during latent infection of mouse trigeminal ganglia. Journal of Virology 64:5342–5348
    [Google Scholar]
  27. Mitchell W. J., Lirette R. P., Fraser N. W. 1990b; Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. Journal of General Virology 71:125–132
    [Google Scholar]
  28. Mizusawa S., Nishimura S., Seela F. 1986; Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Research 14:1319–1324
    [Google Scholar]
  29. Mount S. M. 1982; A catalogue of splice junction sequences. Nucleic Acids Research 10:459–472
    [Google Scholar]
  30. Mullaney J., Moss H. W. McL., McGeoch D. J. 1989; Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. Journal of General Virology 70:449–454
    [Google Scholar]
  31. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  32. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., McGeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  33. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  34. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Ehrlich H. A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  35. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  36. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  37. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO Journal 8:505–511
    [Google Scholar]
  38. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  39. Stuve L. L., Brown-Shimer S., Pachl C., Najarian R., Dina D., Burke R. L. 1987; Structure and expression of the herpes simplex virus type 2 glycoprotein gB gene. Journal of Virology 61:326–335
    [Google Scholar]
  40. Swain M. A., Galloway D. A. 1983; Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. Journal of Virology 46:1045–1050
    [Google Scholar]
  41. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3′-coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  42. Swain M. A., Peet R. W., Galloway D. A. 1985; Characterization of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart. Journal of Virology 53:561–569
    [Google Scholar]
  43. Taha M. Y., Clements G. B., Brown S. M. 1989a; A variant of herpes simplex virus type 2 strain HG52 with a 1.5 kb deletion in R l between 0 to 0.02 and 0.81 to 0.83 map units is non-neurovirulent for mice. Journal of General Virology 70:705–716
    [Google Scholar]
  44. Taha M. Y., Clements G. B., Brown S. M. 1989b; The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. Journal of General Virology 70:3073–3078
    [Google Scholar]
  45. Taha M. Y., Brown S. M., Clements G. B., Graham D. I. 1990; The JH2604 deletion variant of herpes simplex virus type 2 (HG52) fails to produce necrotizing encephalitis following intracranial inoculation of mice. Journal of General Virology 71:1597–1601
    [Google Scholar]
  46. Taylor P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Research 14:437–441
    [Google Scholar]
  47. Tsurumi T., Maeno K., Nishiyama Y. 1987; Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 2 and comparison with the type 1 counterpart. Gene 52:129–137
    [Google Scholar]
  48. Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y.-F., Flanagan W. M., Stevens J. G. 1988a; Physical characterization of the herpes simplex virus latency-associated transcript in neurons. Journal of Virology 62:1194–1202
    [Google Scholar]
  49. Wagner E. K., Flanagan W. M., Devi-Rao G., Zhang Y.-F., Hill J. M., Anderson K. P., Stevens J. G. 1988b; The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. Journal of Virology 62:4577–4585
    [Google Scholar]
  50. Wechsler S. L., Nesburn A. B., Watson R., Slanina S., Ghiasi H. 1988a; Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. Journal of General Virology 69:3101–3106
    [Google Scholar]
  51. Wechsler S. L., Nesburn A. B., Watson R., Slanina S., Ghiasi H. 1988b; Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. Journal of Virology 62:4051–4058
    [Google Scholar]
  52. Whitton J. L., Clements J. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of the two spliced immediate-early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
  53. Whitton J. L., Rixon F. J., Easton A. I., Clements J. B. 1983; Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  54. Worrad D. M., Caradonna S. 1988; Identification of the coding sequence for herpes simplex virus uracil-DNA glycosylase. Journal of Virology 62:4774–4777
    [Google Scholar]
  55. Zwaagstra J. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wheatley S. C., Lillycrop K., Wood J., Latchman D. S., Patel K., Wechsler S. L. 1990; Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. Journal of Virology 64:5019–5028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-12-3057
Loading
/content/journal/jgv/10.1099/0022-1317-72-12-3057
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error