1887

Abstract

A major antigenic region localized to the C-terminal part of the 55K glycoprotein of human cytomegalovirus (HCMV) was mapped using synthetic peptides. Analysis of the region with six sera from healthy anti-HCMV seropositive blood donors showed that the length of the reactive sequence varied between four and eight amino acids (aa). The shortest sequence recognized was VTSG (aa 798 to 801 of the 130K precursor protein), but most sera required the three or four residues C-terminal to this to react, giving a major site of VTSGSTKD (aa 798 to 805). Using peptides immobilized on polyethylene pins, the importance of both interior (between aa essential for the binding of an antibody) and extension spacer residues was evident. Free peptides containing the reactive sequence were prepared for use in a conventional ELISA and optimal pH conditions for coating were determined. The best results were achieved at pH 2 to 3, which is in agreement with the advantageous net charge of these peptides at this low pH. Anti-HCMV positive sera showed a sensitivity of approximately 50% for both peptides on polyethylene pins and peptides coated onto plates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-12-3017
1991-12-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/12/JV0720123017.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-12-3017&mimeType=html&fmt=ahah

References

  1. Atassi M. Z., Kazim A. L., Sakata S. 1981; High yield coupling of peptides to protein carriers. Biochimica et biophysica acta 670:300–302
    [Google Scholar]
  2. Britt W. J. 1984; Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology 135:369–378
    [Google Scholar]
  3. Britt W. J., Auger D. 1986; Synthesis and processing of the envelope gp 55–116 complex of human cytomegalovirus. Journal of Virology 58:185–191
    [Google Scholar]
  4. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  5. Dillner J., Dillner L., Robb J., Willems J., Jones I., Lancaster W., Smith R., Lerner R. 1989; A synthetic peptides defines a serologic IgA response to a human papillomavirus-encoded nuclear antigen expressed in virus-carrying cervical neoplasia. Proceedings of the National Academy of Sciences, U. S. A. 86:3838–3841
    [Google Scholar]
  6. Fischer P. M., Merlin E. H. 1990; Direct enzyme-linked immunosorbent assay of anti-peptide antibodies using capture of biotinylated peptides by immobilized avidin. Journal of Immunoassay 11:311–327
    [Google Scholar]
  7. Fridell E., Trojnar J., Wahren B. 1989; A new peptide for human parvovirus B19 antibody detection. Scandinavian Journal of Infectious Diseases 21:597–603
    [Google Scholar]
  8. Geerligs H. J., Weijer W. J., Bloemhoff W., Welling G. W., Welling-Wester S. 1988; The influence of pH and ionic strength on the coating of peptides of herpes simplex type 1 in an enzyme-linked immunosorbent assay. Journal of Immunological Methods 106:239–244
    [Google Scholar]
  9. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, U. S. A. 81:3998–4002
    [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis. Journal of Immunological Methods 102:259–274
    [Google Scholar]
  11. Gönczöl E., Hudecz F., Ianacone J., Dietzschold B., Starr S., Plotkin S. A. 1986; Immune responses to isolated human cytomegalovirus envelope proteins. Journal of Virology 58:661–664
    [Google Scholar]
  12. Gönczöl E., Ianacone J., Furlini G., Ho W., Plotkin S. A. 1989; Humoral response to cytomegalovirus Towne vaccine strain and to Toledo low-passage strain. Journal of Infectious Diseases 159:851–859
    [Google Scholar]
  13. Houghten R. A. 1985; General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proceedings of the National Academy of Sciences, U. S. A. 82:5131–5135
    [Google Scholar]
  14. Houghten R. A., Bray M. K., DeGraw S. T., Kirby C. J. 1986; Simplified procedure for carrying out simultaneous multiple hydrogen fluoride cleavages of protected peptide resins. International Journal of Peptide and Protein Research 27:673–678
    [Google Scholar]
  15. Kennedy R. C., Dreesman G. R., Chanh T. C., Boswell R. N., Allan J. S., Lee T., Essex M., Sparrow J. T., Ho D. H., Kanda P. 1987; Use of a resin-bound synthetic peptide for identifying a neutralizing antigenic determinant associated with the human immunodeficiency virus envelope. Journal of Biological Chemistry 262:5769–5774
    [Google Scholar]
  16. Kniess N., Mach M., Fay J., Britt W. J. 1991; Distribution of linear antigenic sites on glycoprotein gp55 of human cytomegalo-virus. Journal of Virology 65:138–146
    [Google Scholar]
  17. Landini M. P., Re M. C., Mirolo G., Baldassarri B., La Placa M. 1985; Human immune response to cytomegalovirus structural polypeptides studied by immunoblotting. Journal of Medical Virology 17:303–311
    [Google Scholar]
  18. Landini M. P., Severi B., Badiali L., Gönczöl E., Mirolo G. 1987; Structural component of human cytomegalovirus: in situ localization of the major glycoprotein. Intervirology 27:154–160
    [Google Scholar]
  19. Mach M., Utz U., Fleckenstein B. 1986; Mapping of the major glycoprotein gene of human cytomegalovirus. Journal of General Virology 67:1461–1467
    [Google Scholar]
  20. Masuho Y., Matsumoto Y. I., Sugano T., Fujinaga S., Minamishima Y. 1987; Human monoclonal antibodies neutralizing human cytomegalovirus. Journal of General Virology 68:1457–1461
    [Google Scholar]
  21. Merrifield R. B. 1963; Solid phase synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 85:2149–2154
    [Google Scholar]
  22. Meyer H., Masuho Y., Mach M. 1990; The gp116 of the gp58/l16 complex of human cytomegalovirus represents the amino-terminal part of the precursor molecule and contains a neutralizing epitope. Journal of General Virology 71:2443–2450
    [Google Scholar]
  23. Middeldorp J. M., Meloen R. H. 1988; Epitope-mapping on the Epstein-Barr virus major capsid protein using systematic synthesis of overlapping oligo-peptides. Journal of Virological Methods 21:147–159
    [Google Scholar]
  24. Nowak B., Sullivan C., Sarnow P., Thomas R., Bricout F., Nicolas J. C., Fleckenstein B., Levine A. J. 1984; Characterization of monoclonal antibodies and polyclonal immune sera directed against cytomegalovirus virion proteins. Virology 132:325–338
    [Google Scholar]
  25. Pereira L., Hoffman M., Tatsuno M., Dondero D. 1984; Polymorphism of human cytomegalovirus glycoproteins characterized by monoclonal antibodies. Virology 139:73–86
    [Google Scholar]
  26. Pereira L., Ali M., Kousoulas K., Huo B., Banks T. 1989; Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24
    [Google Scholar]
  27. Spaete R. R., Thayer R. M., Probert W. S., Masiarz F. R., Chamberlain S. H., Rasmussen L., Merigan T. C., Pachl C. 1988; Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology 167:207–225
    [Google Scholar]
  28. Spear P. G. 1985; Glycoproteins specified by herpes simplex virus. In The Herpesviruses vol 3 pp 315–356 Edited by Roizman B., Lopez C. New York: Plenum Press;
    [Google Scholar]
  29. Sundqvist V.-A., Wahren B. 1981; An interchangeable ELISA for cytomegalovirus antigen and antibody. Journal of Virological Methods 2:301–312
    [Google Scholar]
  30. Tam J. P. 1988; Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of Sciences, U. S. A. 85:5409–5413
    [Google Scholar]
  31. Twining S. S., Atassi M. Z. 1979; Use of immunosorbents for the study of antibody binding to sperm whale myoglobin and its synthetic antigenic sites. Journal of Immunological Methods 30:139–151
    [Google Scholar]
  32. Utz U., Britt W. J., Vugler L., Mach M. 1989; Identification of a neutralizíng epitope on glycoprotein gp58 of human cytomegalovirus. Journal of Virology 63:1995–2001
    [Google Scholar]
  33. Wang J. J. G., Steel S., Wisniewolski R., Wang C. Y. 1986; Detection of antibodies to human T-lymphotropic virus type III by using a synthetic peptide of 21 amino acid residues corresponding to a highly antigenic segment of gp41 envelope protein. Proceedings of the National Academy of Sciences, U. S. A. 83:6159–6163
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-12-3017
Loading
/content/journal/jgv/10.1099/0022-1317-72-12-3017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error