Viruses in the Phytoreovirus Genus of the Family have the Same Conserved Terminal Sequences Free

Abstract

The 5′- and 3′-terminal nucleotide sequences of the dsRNA genome segments of rice dwarf virus (RDV) and rice gall dwarf virus (RGDV), members of the Phytoreovirus genus of the family, were determined and compared with those of wound tumour virus (WTV). The 3′ tetranucleotides of the plus strand of all genome segments of RDV and RGDV were found to be the same (---UGAU 3′), except for segment 9 of RDV which had the 3′-terminal sequence ---CGAU 3′. The conserved 3′-terminal sequence (---UGAU 3′) was the same as that found in the genome segments of WTV, another member of the Phytoreovirus genus. On the other hand, the 5′ termini of the plus strands of RDV and RGDV were found to have two or three types of common sequence. RDV had either 5′ GGCAAA--- or 5′ GGUAAA---, whereas RGDV had 5′ GGCAUUUU---, 5′ GGUAUUUU--- or 5′ GGUAAUUU---. These conserved sequences were similar to the conserved 5′-terminal sequence of WTV (5′ GGUAUU---). Although the three viruses differ in plant host range, tissue specificity, vector specificity and disease symptom expression, these results suggest that they have a common ancestral origin.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-12-2857
1991-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/12/JV0720122857.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-12-2857&mimeType=html&fmt=ahah

References

  1. Antczak J. B., Chmelo R., Pickup D. J., Joklik W. K. 1982; Sequence at both termini of the 10 genes of reovirus serotype 3 (strain Dearing). Virology 121:307–319
    [Google Scholar]
  2. Anzola J. V., Xu Z., Asamizu T., Nuss D. L. 1987; Segment specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proceedings of the National Academy of Sciences, U.S.A. 84:8301–8305
    [Google Scholar]
  3. Asamizu T., Summers D., Motika M. B., Anzola J. V., Nuss D. L. 1985; Molecular cloning and characterization of the genome of wound tumor virus: a tumor-inducing plant reovirus. Virology 114:398–409
    [Google Scholar]
  4. Azuhata F., Uyeda I., Kudo H., Shikata E. 1990; Characterization of the cDNA clone to rice black-streaked dwarf virus genome 10. Journal of the Faculty of Agriculture, Hokkaido University 64:183–189
    [Google Scholar]
  5. Both G. W., Bellamy A. R., Siegman L. J. 1984; Nucleotide sequence of the dsRNA genome segment 7 of simian 11 rotavirus. Nucleic Acids Research 12:1621–1626
    [Google Scholar]
  6. Clarke I. N., McCrae M. A. 1983; The molecular biology of rotaviruses. VI. RNA species-specific terminal conservation in rotaviruses. Journal of General Virology 64:1877–1884
    [Google Scholar]
  7. De Wachter R., Fiers W. 1972; Preparative two-dimensional polyacrylamide gel electrophoresis of 32P-labeled RNA. Analytical Biochemistry 49:184–197
    [Google Scholar]
  8. Donis-Keller H., Maxam A. M., Gilbert W. 1977; Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Research 4:2527–2538
    [Google Scholar]
  9. England T. E., Uhlenbeck O. C. 1978; 3′-Terminal labeling of RNA with T4 RNA ligase. Nature, London 275:560–561
    [Google Scholar]
  10. Erst M. K., Duhl J. A. 1989; Nucleotide sequence of genomic segment 2 of human rotavirus Wa. Nucleic Acids Research 17:4382
    [Google Scholar]
  11. Francki R. I. B., Milne R. G., Hatta T. 1985; The plant reoviridae. In Atlas of Plant Viruses vol 1 pp 47–72 Boca Raton: CRC Press;
    [Google Scholar]
  12. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and nomenclature of viruses. Fifth report of the International Committee on Taxonomy of Viruses. pp 1–450 Wien & New York: Springer-Verlag;
    [Google Scholar]
  13. Fukumoto F., Omura T., Minobe Y. 1989; Nucleotide sequence of segment S9 of the rice dwarf virus genome. Archives of Virology 107:135–139
    [Google Scholar]
  14. Gaillard R. K., Li J. K. K., Keen J. D., Joklik W. K. 1982; The sequence at the termini of four genes of the three reovirus serotypes. Virology 121:320–326
    [Google Scholar]
  15. Hastings K. E. M., Mill ward S. 1978; Nucleotide sequences at the 5′ termini of reovirus mRNA. Journal of Virology 28:490–498
    [Google Scholar]
  16. Imai M., Akatani K., Ikegami N., Furuichi Y. 1983; Capped and conserved terminal structures in human rotavirus genome double-strand RNA segments. Journal of Virology 47:125–136
    [Google Scholar]
  17. Joklik W. K. 1983; The reovirus particle. In The Reoviridae pp 9–78 Edited by Joklik W. K. New York: Plenum Press;
    [Google Scholar]
  18. Kawano S., Uyeda I., Shiffata E. 1984; Particle structure and double-strand RNA of rice ragged stunt virus. Journal of the Faculty of Agriculture, Hokkaido University 61:408–418
    [Google Scholar]
  19. Kodama T., Suzuki N. 1973; RNA polymerase activity in purified rice dwarf virus. Armais of the Phytopathological Society of Japan 39:251–258
    [Google Scholar]
  20. Koganezawa H., Hibino H., Motoyoshi F., Kato H., Noda H., Ishikawa K., Omura T. 1990; Nucleotide sequence of segment S9 of the genome of rice gall dwarf virus. Journal of General Virology 71:1861–1863
    [Google Scholar]
  21. Kuchino Y., Nishimura S., Smith R. E., Furuichi Y. 1982; Homologous terminal sequences in the double-stranded RNA genome segments of cytoplasmic polyhedrosis virus of the silkworm Bombyx mori. Journal of Virology 44:538–543
    [Google Scholar]
  22. Kumar A., Charpilienne A., Cohen J. 1989; Nucleotide sequence of the gene for RNA binding protein (VP2) of RF bovine rotavirus. Nucleic Acids Research 17:2126
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Li J. K., Scheible P. P., Joklik W. K. 1980; Nature of the 3′-terminal sequences of the plus and minus strands of the S1 gene of reovirus serotype 1, 2 and 3. Virology 105:41–51
    [Google Scholar]
  25. McCrae M. A. 1981; Terminal structure of reovirus RNAs. Journal of General Virology 55:393–403
    [Google Scholar]
  26. McCrae M. A., McCorquodale J. G. 1983; Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology 126:204–212
    [Google Scholar]
  27. Marzachi C., Boccardo G., Nuss D. L. 1991; Cloning of the maize rough dwarf virus genome: molecular confirmation of the plant reovirus classification scheme and identification of two large nonoverlapping coding domains within a single genomic segment. Virology 180:518–526
    [Google Scholar]
  28. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, U.S.A. 74:560–564
    [Google Scholar]
  29. Mertens P. P. C., Sangar D. V. 1985; Analysis of the terminal sequences of the genome segments of four orbiviruses. Virology 140:55–67
    [Google Scholar]
  30. Mitchell D. B., Both G. W. 1990; Conservation of a metal binding motif despite extensive sequence diversity in the rotavirus non-structural protein NS53. Virology 174:618–621
    [Google Scholar]
  31. Miura K. I., Watanabe K., Sugiura M., Shatkin A. J. 1974; The 5′-terminal nucleotide sequences of the double-stranded RNA of human reovirus. Proceedings of the National Academy of Sciences, U.S.A. 71:3979–3983
    [Google Scholar]
  32. Nakashima K., Kakutani T., Minobe Y. 1990; Sequence analysis and product assignment of segment 7 of the rice dwarf virus genome. Journal of General Virology 71:725–729
    [Google Scholar]
  33. Nomoto A., Imura N. 1979; A convenient sequencing method for 5′ protein-linked RNAs. Nucleic Acids Research 7:1233–1246
    [Google Scholar]
  34. Nomoto A., Kitamura N., Lee J. J., Rothberg P. G., Imura N., Wimmer E. 1981; Identification of point mutations in the genome of the poliovirus Sabin vaccine LSc 2ab, and catalog of RNase T1- and RNase A-resistant oligonucleotides of poliovirus type 1 (Mahoney). Virology 112:217–227
    [Google Scholar]
  35. Omura T., Morinaka T., Inoue H., Saito Y. 1982; Purification and some properties of rice gall dwarf virus, a new phytoreovirus. Phytopathology 72:1246–1249
    [Google Scholar]
  36. Omura T., Minobe Y., Tsuchizaki T. 1988; Nucleotide sequence of segment S10 of the rice dwarf virus genome. Journal of General Virology 69:227–231
    [Google Scholar]
  37. Omura T., Ishikawa K., Hirano H., Ugaki M., Minobe Y., Tsuchizaki T., Kato H. 1989; The outer capsid protein of rice dwarf virus is encoded by genome segment S8. Journal of General Virology 70:2759–2764
    [Google Scholar]
  38. Payne C. C., Mertens P. P. C. 1983; Cytoplasmic polyhedrosis viruses. In The Reoviridae pp 425–504 Edited by Joklik W. K. New York: Plenum Press;
    [Google Scholar]
  39. Reddy D. V. R., MacLeod R. 1976; Polypeptide components of wound tumor virus. Virology 70:274–282
    [Google Scholar]
  40. Reddy D. V. R., Rhodes D. P., Lesnaw J. A., MacLeod R., Banerjee A. K., Black L. M. 1977; In vitro transcription of wound tumor virus RNA by virion-associated RNA transcriptase. Virology 80:356–361
    [Google Scholar]
  41. Rensing U. F. E., Schoenmakers J. G. G. 1973; A sequence of 50 nucleotides from coliphage R17 RNA. European Journal of Biochemistry 33:8–18
    [Google Scholar]
  42. Shikata E. 1981; Reoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis pp 423–451 Edited by Kurstak E. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  43. Smith H. O. 1980; Recovery of DNA from gels. Methods in Enzymology 65:371–380
    [Google Scholar]
  44. Suzuki N., Watanabe Y., Kusano T., Kitagawa Y. 1989; Nucleotide sequence of rice dwarf virus segment 5. Nucleic Acids Research 17:8858
    [Google Scholar]
  45. Suzuki N., Watanabe Y., Kusano T., Kitagawa Y. 1990a; Sequence analysis of rice dwarf phytoreovirus genome segments S4, S5 and S6: comparison with the equivalent in wound tumor virus. Virology 179:446–454
    [Google Scholar]
  46. Suzuki N., Watanabe Y., Kusano T., Kitagawa Y. 1990b; Sequence analysis of the rice dwarf phytoreovirus segment S3 transcript encoding the major structural core protein of 114 kDa. Virology 179:455–459
    [Google Scholar]
  47. Uyeda I., Shikata E. 1982; Ultrastructure of rice dwarf virus. Annals of the Phytopathological Society of Japan 48:295–300
    [Google Scholar]
  48. Uyeda I., Shikata E. 1984; Characterization of RNAs synthesized by the virion-associated transcriptase of rice dwarf virus in vitro. Virus Research 1:527–532
    [Google Scholar]
  49. Uyeda I., Matsumura T., Sano T., Ohshima K., Shikata E. 1987; Nucleotide sequence of rice dwarf virus genome segment 10. Proceedings of Japan Academy 63:227–230
    [Google Scholar]
  50. Uyeda I., Kudo H., Takahashi T., Sano T., Ohshima K., Matsumura T., Shixata E. 1989; Nucleotide sequence of rice dwarf virus genome segment 9. Journal of General Virology 70:1297–1300
    [Google Scholar]
  51. Uyeda I., Kudo H., Yamada N., Matsumura T., Shikata E. 1990; Nucleotide sequence of rice dwarf virus genome segment 4. Journal of General Virology 71:2217–2222
    [Google Scholar]
  52. Yamada N., Uyeda I., Kudo H., Shikata E. 1990; Nucleotide sequence of rice dwarf virus genome segment 3. Nucleic Acids Research 18:6419
    [Google Scholar]
  53. Yokoyama M., Nozu Y., Hashimoto J., Omura T. 1984; In vitro transcription by RNA polymerase associated with rice gall dwarf virus. Journal of General Virology 65:533–538
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-12-2857
Loading
/content/journal/jgv/10.1099/0022-1317-72-12-2857
Loading

Data & Media loading...

Most cited Most Cited RSS feed