1887

Abstract

Monoclonal antibodies (MAbs) raised against a 15-mer peptide representing the centre of the principal neutralization domain of human immunodeficiency virus type 1 (strain BH10) showed wide variations in neutralizing activity against the homologous strain. The nature of this difference in neutralizing activity was studied by measuring antibody concentration, their affinity for peptide and specificity, by reaction with peptides which differed in the extent of sequence overlap, length and the presence of single amino acid replacements. All MAbs bound to approximately the same region in the principal neutralization domain, within the sequence RIQRGPGRAFV. The peptides with which each antibody was able to react differed by only a few amino acids. The neutralizing activity of each MAb preparation was related to its afinity and concentration; the affinity is related in part to the fine structure of the epitope recognized. MAbs with high affinity for the peptide tended to react only with peptides in which amino acid replacements did not affect the β-turn potential of the peptide, whereas the reactivity of MAbs with low affinity was relatively insensitive to amino acid replacements affecting the β-turn potential.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-10-2519
1991-10-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/10/JV0720102519.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-10-2519&mimeType=html&fmt=ahah

References

  1. Atwood J. L., Hamada F., Robinson K. D., Orr G. W., Vincent R. L. 1991; X-ray diffraction evidence for aromatic π hydrogen bonding to water. Nature, London 349:683–684
    [Google Scholar]
  2. Back N. K. T., Thiriart C., Delers A., Ramautarsing C., Bruck C., Goudsmit J. 1990; Association of antibodies blocking HIV-1 gpl60-sCD4 attachment with virus neutralizing activity in human sera. Journal of Medical Virology 31:200–208
    [Google Scholar]
  3. Barany G., Merrifield R. B. 1980; Solid-phase peptide synthesis. In The Peptides: Analysis, Synthesis, Biology vol 2 pp 3–284 Edited by Gross E., Meienhofer J. New York & London: Academic Press;
    [Google Scholar]
  4. Beatty J. D., Beatty B. G., Vlahos W. G., Hill L. R. 1987; Method of analysis of non-competitive enzyme immunoassays for antibody quantification. Journal of Immunological Methods 100:161–172
    [Google Scholar]
  5. Devash Y., Calvelli T. A., Wood D. G., Reagan K. J., Rubinstein A. 1990; Vertical transmission of human immunodeficiency virus is correlated with the absence of high-affinity/avidity maternal antibodies to the gpl20 principal neutralization domain. Proceedings of the National Academy of Sciences, U.S.A. 87:3445–3449
    [Google Scholar]
  6. Doolittle R. F. 1985; Proteins. Scientific American 253:74–85
    [Google Scholar]
  7. Durda P. J., Bacheler L., Clapham P., Jenoski A. M., Leece B., Matthews T. J., McKnight A., Pomerantz R., Rayner M., Weinhold K. J. 1990; HIV-1 neutralizing monoclonal antibodies induced by a synthetic peptide. Aids Research and Human Retroviruses 6:1115–1123
    [Google Scholar]
  8. Emini E. A., Nara P. L., Schleif W. A., Lewis J. A., Davide J. P., Lee D. R., Kessler J., Conley S., Matsushita S., Putney S. D., Gerety R. J., Eichberg J. W. 1990; Antibody-mediated in vitro neutralization of human immunodeficiency virus type 1 abolishes infectivity for chimpanzees. Journal of Virology 64:3674–3678
    [Google Scholar]
  9. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. 1985; Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. Journal of Immunological Methods 77:305–319
    [Google Scholar]
  10. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, U.S.A 81:3998–4002
    [Google Scholar]
  11. Geysen H. M., Barteling S. J., Meloen R. H. 1985; Small peptides induce antibodies with sequence and structural requirements for binding antigen comparable to antibodies raised against the native protein. Proceedings of the National Academy of Sciences, U.S.A 82:178–182
    [Google Scholar]
  12. Girard M., Kieny M., Pinter A., Barré-Sinoussi F., Nara P., Kolbe H., Kusumi K., Chaput A., Reinhart T., Muchmore E., Ronco J., Kaczorek M., Gomard E., Gluckman J., Fultz P. N. 1991; Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A 88:542–546
    [Google Scholar]
  13. Goudsmit J., Debouck C., Meloen R. H., Smit L., Barker M., Asher D. M., Wolff A. V., Gibbs C. J. Jr, Gajdusek D. C. 1988; Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proceedings of the National Academy of Sciences, U.S.A. 85:4478–4482
    [Google Scholar]
  14. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P., Holley L. H., Karplus M., Bolognesi D. P., Matthews T. J., Emini E. A., Putney S. D. 1990; Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science 249:932–935
    [Google Scholar]
  15. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. 1990; Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gpl20) expressed in Chinese hamster ovary cells. Journal of Biological Chemistry 265:10373–10382
    [Google Scholar]
  16. Levitt M., Perutz M. F. 1988; Aromatic rings act as hydrogen bond acceptors. Journal of Molecular Biology 201:751–754
    [Google Scholar]
  17. Novotny J., Bruccoleri R. E., Saul F. A. 1989; On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry 28:4735–4749
    [Google Scholar]
  18. Padlan E. A. 1990; On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins: Structure, Function and Genetics 7:112–124
    [Google Scholar]
  19. Palker T. J., Clark M. E., Langlois S. J., Matthews T. J., Weinhold K. J., Randall R. R., Bolognesi D. P., Haynes B. F. 1985; Type-specific neutralization of the human immunodeficiency virus with antibodies to env-e ncoded synthetic peptides. Proceedings of the National Academy of Sciences, U.S.A. 85:1932–1936
    [Google Scholar]
  20. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalsky J. A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S., Pearson M., Lauten- berger Papas T., Ghrayeb J., Chang T., Gallo R., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature, London 313:277–284
    [Google Scholar]
  21. Rusche J. R., Javaherian K., McDanal C., Petro J., Lynn D. L., Grimaila R., Langlois A., Gallo R. C., Arhur L. O., Fishinger P. J., Bolognesi D. P., Putney S. D., Matthews T. J. 1988; Antibodies that inhibit fusion of human immunodeficiency virus infected cells bind a 24-amino acid sequence of the viral envelope, gpl20. Proceedings of the National Academy of Sciences, U.S.A 85:3198–3202
    [Google Scholar]
  22. Saira Mian I., Bradwell A. R., Olson A. J. 1991; Structure, function and properties of antibody binding sites. Journal of Molecular Biology 217:133–151
    [Google Scholar]
  23. Schaaper W. M. M., Lankhof H., Puijk W. C., Meloen R. H. 1989; Manipulation of antipeptide immune response by varying the coupling of the peptide with the carrier protein. Molecular Immunology 26:81–85
    [Google Scholar]
  24. Shapira M., Jibson M., Muller G., Amon G. 1984; Immunity and protection against influenza virus by synthetic peptide corresponding to antigenic sites of hemagglutinin. Proceedings of the National Academy of Sciences, U.S.A 81:2461–2465
    [Google Scholar]
  25. Stevens F. J. 1987; Modification of an ELISA-based procedure for affinity determination: correction necessary for use with bivalent antibody. Molecular Immunology 10:1055–1060
    [Google Scholar]
  26. Stewart M. W., Lew A. M. 1985; The importance of antibody affinity in the performance of immunoassays for antibody. Journal of Immunological Methods 78:173–190
    [Google Scholar]
  27. Suter M. 1982; A modified ELISA technique for hapten antibodies. Journal of Immunological Methods 53:103–108
    [Google Scholar]
  28. Tainer J. A., Getzoff E. D., Alexander H., Houghten R. A., Olson A. J., Lerner R. A. 1984; The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature, London 312:127–134
    [Google Scholar]
  29. Wilks W., Walker L., O’Brien J., Habeshaw J., Dalgleish A. 1990; Differences in affinity of anti-CD4 monoclonal antibodies predict their effects on syncytium induction by human immunodeficiency virus. Immunology 71:10–15
    [Google Scholar]
  30. Wilmot C. M., Thornton J. M. 1988; Analysis and prediction of the different types of β-turn in proteins. Journal of Molecular Biology 203:221–232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-10-2519
Loading
/content/journal/jgv/10.1099/0022-1317-72-10-2519
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error