Transcriptional activity across the Epstein-Barr virus genome in Raji cells during latency and after induction of an abortive lytic cycle Free

Abstract

We have studied the relative rate of transcription across the Epstein-Barr virus genome in the Burkitt’s lymphoma cell line Raji by nuclear run-on analysis during latency and after induction of an abortive lytic cycle with 12--tetradecanoylphorbol 13-acetate (TPA) and 5-iodo-2′-deoxyuridine (IUdR). During latency the entire, or almost the entire, viral genome was found to be transcriptionally active to a low or intermediate extent, with some variation in activity along the genome. The fragment with the highest transcriptional activity was RI J, which contains the genes encoding the small nuclear RNAs EBER1 and -2, transcribed predominantly by RNA polymerase III. An intermediate level of transcription was observed between positions 10 and 138 (kb), with areas of slightly higher activity on the large internal repeats and the left duplicated region (DL). The remaining part of the viral genome, between position 138 and the termini, and the termini and position 10 (kb) (with the exception of the RI J fragment), showed very little transcriptional activity, except for the intermediately active regions carrying the righthand (DR) and the terminal repeats. Upon induction of the viral genome with TPA and IUdR, the viral genome was transcriptionally active at a rate at least tenfold that seen during latency. Polymerases were not equally distributed along the genome after induction; the highest density was found in regions 48 to 58 kb, 82 to 84 kb, 102 to 104 kb, 118 to 122 kb and 142 to 145 kb of the viral genome. High transcriptional activity correlated with distinct transcription units in some cases, i.e. HI HILF1 (DL), HI MLF1, HI ZLF1/HI RLF1 and HI X (thymidine kinase), but not in others (HI H2). Besides initiation of transcription, other regulatory processes such as stabilization and processing of primary transcripts may also contribute to regulation of virus gene expression. Addition of cycloheximide completely abolished the transcriptional activation of the genome mediated by TPA and IUdR.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-10-2391
1991-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/10/JV0720102391.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-10-2391&mimeType=html&fmt=ahah

References

  1. Abbot S. D., Rowe M., Cadwallader K., Ricksten A., Gordon J., Wang F., Rymo L., Rickinson A. B. 1990; Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. Journal of Virology 64:2126–2134
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. London 310:207–211
    [Google Scholar]
  3. Bauer G., Hofler P., zur Hausen H. 1982; Epstein-Barr virus induction by a serum factor. I. Induction and cooperation with additional inducers. Virology 121:184–194
    [Google Scholar]
  4. Bentley D. L., Groudine M. 1986; Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Molecular Cell Biology 6:3481–3489
    [Google Scholar]
  5. Biggin M., Bodescot M., Perricaudet M., Farrell P. 1987; Epstein-Barr virus gene expression in P3HR-l-superinfected Raji cells. Journal of Viology 61:3120–3132
    [Google Scholar]
  6. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO Journal 5:3243–3249
    [Google Scholar]
  7. Chevallier-Greco A., Gruffat H., Manet E., Calender A., Sergeant A. 1989; The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. Journal of Viology 63:615–623
    [Google Scholar]
  8. Church G. M., Gilbert W. 1984; Genomic sequencing. Proceedings of the National Academy of Sciences, U.S.A 81:1991–1995
    [Google Scholar]
  9. Cordier M., Calender A., Billaud M., Zimber U., Rousselet G., Pavlish O., Banchereau J., Tursz T., Bornkamm G. W., Lenoir G. M. 1990; Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23. Journal of Virology 64:1002–1013
    [Google Scholar]
  10. Countryman J., Miller G. 1985; Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proceedings of the National Academy of Sciences, U.S.A 82:4085–4089
    [Google Scholar]
  11. Dambaugh T., Wang F., Hennessy K., Woodland E., Rickinson A., Kieff E. 1986; Expression of the Epstein-Barr virus nuclear protein 2 in rodent cells. Journal of Virology 59:453–462
    [Google Scholar]
  12. Eick D. 1990; Elongation and maturation of c-myc RNA is inhibited by differentiation inducing agents in HL60 cells. Nucleic Acids Research 18:1199–1205
    [Google Scholar]
  13. Eick D., Bornkamm G. W. 1986; Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Research 14:8331–8346
    [Google Scholar]
  14. Eick D., Polack A., Kofler E., Lenoir G. M., Rickinson A. B., Bornkamm G.W. 1990; Expression of P0- and P3-RNA from the normal and translocated c-myc allele in Burkitt’s lymphoma cells. Oncogene 5:1397–1402
    [Google Scholar]
  15. Fahraeus R., Jansson A., Ricksten A., Sjoblom A., Rymo L. 1990; Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences, U.S.A 87:7390–7394
    [Google Scholar]
  16. Farrell P. J. 1989; Epstein-Barr virus genome. In Advances in Viral Oncology pp 103–132 Edited by Klein G. New York: Raven Press;
    [Google Scholar]
  17. Farrell P. J., Rowe D. T., Rooney C. M., Kouzarides T. 1989; Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO Journal 8:127–132
    [Google Scholar]
  18. Flemington E., Speck S. H. 1990a; Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. Journal of Virology 64:1227–1232
    [Google Scholar]
  19. Flemington E., Speck S. H. 1990b; Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BHLF1. Journal of Virology 64:1217–1226
    [Google Scholar]
  20. Ghosh D., Kieff E. 1990; Cis-acting regulatory elements near the Epstein-Barr virus latent-infection membrane protein transcriptional start site. Journal of Virology 64:1855–1858
    [Google Scholar]
  21. Greenberg M. E., Ziff E. B. 1984; Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature, London 311:433–437
    [Google Scholar]
  22. Hardwick J. M., Lieberman P. M., Hayward S. D. 1988; A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. Journal of Virology 62:2274–2284
    [Google Scholar]
  23. Henle G., Henle W. 1966; Immunofluorescence in cells derived from Burkitt’s lymphoma. Journal of Bacteriology 91:1248–1256
    [Google Scholar]
  24. Heston L., Rabson M., Brown N., Miller G. 1982; New Epstein-Barr virus variants from cellular subclones of P3J-HR-1 Burkitt lymphoma. Nature, London 295:160–163
    [Google Scholar]
  25. Hofer E., Darnell J. E. Jr 1981; The primary transcription unit of the mouse /i-major globin gene. Cell 23:585–593
    [Google Scholar]
  26. Howe J. G., Shu M.-D. 1989; Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 57:825–834
    [Google Scholar]
  27. Hummel M., Kieff E. 1982a; Mapping of polypeptides encoded by the Epstein-Barr virus genome in productive infection. Proceedings of the National Academy of Sciences, U.S.A 79:5698–5702
    [Google Scholar]
  28. Hummel M., Kieff E. 1982b; Epstein-Barr virus RNA. VIII. Viral RNA in permissively infected B95-8 cells. Journal of Virology 43:262–272
    [Google Scholar]
  29. Kieff E., Liebowitz D. 1990; Epstein-Barr virus and its replication. In Virology pp 1889–1920 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  30. Laux G., Freese U. K., Fischer R., Polack A., Kofler E., Bornkamm G. W. 1988a; TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162:503–507
    [Google Scholar]
  31. Laux G., Perricaudet M., Farrell P. J. 1988b; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 7:769–774
    [Google Scholar]
  32. Laux G., Economou A., Farrell P. J. 1989; The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. Journal of General Virology 70:3079–3084
    [Google Scholar]
  33. Lieberman P. M., O’Hare P., Hayward G. S., Hayward S. D. 1986; Promiscuous trans activation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. Journal of Virology 60:140–148
    [Google Scholar]
  34. Lindahl T., Adams A., Bjursell G., Bornkamm G. W., Kaschka-Dierich C., Jehn U. 1976; Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. Journal of Molecular Biology 102:511–530
    [Google Scholar]
  35. Marschall M., Leser U., Seibl R., Wolf H. 1989; Identification of proteins encoded by Epstein-Barr virus trans-activator genes. Journal of Virology 63:938–942
    [Google Scholar]
  36. Metzenberg S. 1989; Relative rates of RNA synthesis across the genome of Epstein-Barr virus are highest near oriP and oriLyt. Journal of Viology 63:4938–4944
    [Google Scholar]
  37. Miller G., Rabson M., Heston L. 1984; Epstein-Barr virus with heterogeneous DNA disrupts latency. Journal of Virology 50:174–182
    [Google Scholar]
  38. Miller G., Heston L., Countryman J. 1985; p3hr-1 ebv heterogeneous DNA is an independent replicon maintained by cell to cell spread. Journal of Virology 54:45–52
    [Google Scholar]
  39. Moos M., Gallwitz D. 1983; Structure of two human beta-actinrelated processed genes one of which is located next to a simple repetitive sequence. EMBO Journal 2:757–761
    [Google Scholar]
  40. Nepveu A., Marcu K. B. 1986; Intragenic pausing and anti-sense transcription within the murine c-myc locus. EMBO Journal 5:2859–2865
    [Google Scholar]
  41. Nepveu A., Marcu K. B., Skoultchi A., Lachman H. M. 1987; Contributions of transcriptional and post-transcriptional mechanisms.to the regulations of c-myc expression in mouse erythroleukemia cells. Genes and Development 1:938–945
    [Google Scholar]
  42. Oguro M. O., Shimizu N., Ono Y., Takada K. 1987; Both the rightward and the leftward open reading frames within the Bam H1 M DNA fragment of Epstein-Barr virus act as trans-activators of gene expression. Journal of Virology 61:3310–3313
    [Google Scholar]
  43. Polack A., Delius H., Zimber U., Bornkamm G. W. 1984a; Two deletions in the Epstein-Barr virus genome of the Burkitt lymphoma nonproducer line Raji. Virology 133:146–157
    [Google Scholar]
  44. Polack A., Hartl G., Zimber U., Freese U. K., Laux G., Takaki K., Hohn B., Gissmann L., Bornkamm G. W. 1984b; A complete set of overlapping cosmid clones of M-ABA virus derived from nasopharyngeal carcinoma and its similarity to other Epstein-Barr virus isolates. Gene 27:279–288
    [Google Scholar]
  45. Pulvertaft R. J. V. 1965; A study of malignant tumours in Nigeria by shortterm tissue culture. Journal of Clinical Pathology 18:261–273
    [Google Scholar]
  46. Rabson M., Heston L., Miller G. 1983; Identification of a rare Epstein-Barr virus variant that enhances early antigen expression in Raji cells. Proceedings of the National Academy of Sciences, U.S.A 80:2762–2766
    [Google Scholar]
  47. Rawlins D. R., Milman G., Hayward S. D., Hayward G. S. 1985; Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42:859–868
    [Google Scholar]
  48. Sample J., Kieff E. 1990; Transcription of the Epstein-Barr virus genome during latency in growth-transformed lymphocytes. Journal of Virology 64:1667–1674
    [Google Scholar]
  49. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein-Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  50. Sugawara K., Mizuno F., Osato T. 1972; Epstein-Barr virus-associated antigens in non-producing clones of human lymphoblastoid cell lines. Nature, London 239:242–243
    [Google Scholar]
  51. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. Journal of Virology 63:445–449
    [Google Scholar]
  52. Urier G., Buisson M., Chambard P., Sergeant A. 1989; The Epstein-Barr virus early protein EB1 activates transcription from dilferent responsive elements including AP-1 binding sites. EMBO Journal 8:1447–1453
    [Google Scholar]
  53. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840
    [Google Scholar]
  54. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proceedings of the National Academy of Sciences, U.S.A 84:3452–3456
    [Google Scholar]
  55. Yajima Y., Nonoyama M. 1976; Mechanisms of infection with Epstein-Barr virus. I. Viral DNA replication and formation of noninfectious virus particles in superinfected Raji cells. Journal of Virology 19:187–194
    [Google Scholar]
  56. Yates J., Warren N., Reisman D., Sugden B. 1984; A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences, U.S.A 81:3806–3810
    [Google Scholar]
  57. Zimber-Strobl U., Suentzenich K. O., Laux G., Eick D., Cordier M., Calender A., Billaud M., Lenoir G. M., Bornkamm G. W. 1991; The Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. Journal of Virology 65:415–423
    [Google Scholar]
  58. Zur Hausen H., O’Neill F. J., Freese U. K., Hecker E. 1978; Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature, London 272:373–375
    [Google Scholar]
  59. Zur Hausen H., Bornkamm G. W., Schmidt R., Hecker E. 1979; Tumor initiators and promoters in the induction of Epstein-Barr virus. Proceedings of the National Academy of Sciences, U.S.A 76:782–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-10-2391
Loading
/content/journal/jgv/10.1099/0022-1317-72-10-2391
Loading

Data & Media loading...

Most cited Most Cited RSS feed