1887

Abstract

More than 50 fragments resulting from complete digestion of the DNA of human herpesvirus 6 (HHV-6, strain U1102) with HI, RI, dIII, I, I, I or I have been isolated as clones in M13, plasmid, cosmid and lambda vectors. Using these clones, maps have been constructed for the fragments produced by nine restriction enzymes from unit-length virus genomes and from their concatemeric precursors. The unit-length genome is a linear, double-stranded molecule of 161.5 kbp composed of a central segment of a largely unique sequence of 141 kbp (U) with a sequence of 10 kbp duplicated in the same orientation at both ‘left’ and ‘right’ genomic termini (i.e. ‘left’ and ‘right’ copies of the direct repeat; DR and DR). Adopting as standard an orientation in which the major capsid protein gene is ‘left’ of the gene for alkaline exonuclease, then the ‘right’ genome termini and DR. U junctions occur close to or within repetitive (GGGTTA) sequences. Repetitions of short sequence motifs are present in at least two other regions of the genome. One of these regions consists of a simple repeat (T C/G) of approximately 1.5 kbp in length and is unstable as clones in bacterial vectors. The second region is stably maintained in such vectors and consists of a tandem array of at least 25 copies of a 110 bp sequence containing a single I site. Comparisons of fragments arising from unit-length DNA with those from virus DNA from the nuclei of infected cells have shown that the concatemeric junctions in intracellular DNA contain head-to-tail dimers of the terminal duplications (i.e. … U.DR.DR.U …). The gross structure established here for the genome from the U1102 isolate of HHV-6 resembles closely that suggested by Pellett and his colleagues for the Z29 isolate and differs from that of the five previously characterized human herpesviruses. This structure of HHV-6 DNA bears a superficial resemblance to that proposed for DNA from channel catfish virus and equine cytomegalovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-1-157
1991-01-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/1/JV0720010157.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-1-157&mimeType=html&fmt=ahah

References

  1. Albrecht J.-C., Fleckenstein B. 1990; Structural organisation of the conserved gene block of herpesvirus saimiri coding for DNA polymerase, glycoprotein B, and major DNA binding protein. Virology 174:533–542
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson P. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  3. Birnboim H. C., DOLY J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Briggs M., Fox J., Tedder R. S. 1988; Age prevalence of antibody to human herpesvirus-6. Lancet i:40–41
    [Google Scholar]
  5. Browning G. F., Studdert M. J. 1989; Physical mapping of a genome of equine herpesvirus 2 (equine cytomegalovirus). Archives of Virology 104:77–86
    [Google Scholar]
  6. Cameron K. R., Stamminger T., Craxton M., Bodemer W., Honess R. W., Fleckenstein B. 1987; The 160, 000-Mr virion protein encoded at the right end of the herpesvirus saimiri genome is homologous to the 140, 000-Mr membrane antigen encoded at the left end of the Epstein-Barr virus genome. Journal of Virology 61:2063–2070
    [Google Scholar]
  7. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A. III, Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  8. Chousterman S., Lacasa M., Sheldrick P. 1979; Physical map of the channel catfish virus genome: location of sites for restriction endonucleases Eco RI, HindIII, Hpa I and Xba I. Journal of Virology 31:73–85
    [Google Scholar]
  9. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  10. Downing R. G., Sewankambo N., Serwadda D., Honess R. W., Crawford D., Jarrett R., Griffin B. E. 1987; Isolation of human lymphotropic herpesviruses from Uganda. Lancet ii:390
    [Google Scholar]
  11. Ensoli B., Lusso P., Schachter F., Josephs S. F., Rappaport J., Negro F., Gallo R. C., Wong-Staal F. 1989; Human herpesvirus-6 increases HIV-1 expression in co-infected T cells via nuclear factors binding to the HIV-1 enhancer. EMBO Journal 8:3019–3027
    [Google Scholar]
  12. Feinberg A. D., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  13. Gibson T. J., Rosenthal A., Waterston R. H. 1987; Lorist6, a cosmid vector with Bam HI, Not I, ScaI and Hin dIII cloning sites and altered neomycin phosphotransferase gene expression. Gene 53:283–286
    [Google Scholar]
  14. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein-Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  15. Gopal M. R., Thomson B. J., Fox J., Tedder R. S., Honess R. W. 1990; Detection by PCR of HHV-6 and EBV DNA in blood and oropharynx of healthy adults and HIV-seropositives. Lancet i:1598–1599
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  17. Harnett G. B., Farr T. J., Pietroboni G. R., Bucens M. R. 1990; Frequent shedding of human herpesvirus 6 in saliva. Journal of Medical Virology 30:128–130
    [Google Scholar]
  18. Honess R. W., Watson D. H. 1977; Unity and diversity in the herpesviruses. Journal of General Virology 37:15–37
    [Google Scholar]
  19. Horvat R. T., Wood C., Balachandran N. 1989; Transactivation of human immunodeficiency virus promoter by human herpesvirus 6. Journal of Virology 63:970–973
    [Google Scholar]
  20. Huynh T. V., Young R. A., Davis R. W. 1985; Construction and screening of cDNA libraries in lambda gt10 and lambda gt11. In DNA Cloning: A Practical Approach vol. 1 pp. 49–78 Edited by Glover D. Oxford & Washington: IRL Press;
    [Google Scholar]
  21. Jarrett R. F., Gallagher A., Gledhill S., Jones M. D., Teo I., Griffin B. E. 1989; Variation in restriction map of HHV-6 genome. Lancet i:448–449
    [Google Scholar]
  22. Josephs S. F., Salahuddin S. Z., Ablashi D. V., Schacter F., Wong-Staal F., Gallo R. C. 1986; Genomic analysis of human B-lymphotropic virus. Science 234:601–603
    [Google Scholar]
  23. Kikuta H., Lau H., Matsumoto S., Josephs S. F., Gallo R. C. 1989; Polymorphism of human herpesvirus 6 DNA from five Japanese patients with exanthem subitum. Journal of Infectious Diseases 160:550–551
    [Google Scholar]
  24. Kishi M., Harada H., Takahashi M., Tanaka A., Hayashi M., Nonoyama M., Josephs S. F., Buchbinder A., Ablashi D. V., Schacter F., Wong-Staal F., Salahuddin S. Z., Gallo R. C. 1988; A repeat sequence GGGTTA is shared by DNA of human herpesvirus 6 and Marek’s disease virus. Journal of Virology 62:4824–4827
    [Google Scholar]
  25. Knowles W. A., Gardner S. D. 1988; High prevalence of antibody to human herpesvirus-6 and seroconversion associated with rash in two infants. Lancet ii:912–913
    [Google Scholar]
  26. Lawrence G. L., Chee M., Craxton M. A., Gompels U. A., Honess R. W., Barrell B. G. 1990; Human herpesvirus 6 is closely related to human cytomegalovirus. Journal of Virology 64:287–299
    [Google Scholar]
  27. Levy J. A., Greenspan D., Ferro F., Lennette E. T. 1990; Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet i:1047–1050
    [Google Scholar]
  28. Lopez C., Honess R. W. 1990; Human herpesvirus-6. In Virology 2nd edn pp. 2055–2062 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  29. Lopez C., Pellett P., Stewart J., Goldsmith C., Sanderlin K., Black J., Warfield D., Feorino P. 1988; Characteristics of human herpesvirus-6. Journal of Infectious Diseases 157:1271–1273
    [Google Scholar]
  30. Lusso P., Markham P. D., Tschachler E., di Marzo Veronese F., Salahuddin S. Z., Ablashi D. V., Savita P., Krohn K., Gallo R. C. 1988; In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). Journal of Experimental Medicine 167:1659–1670
    [Google Scholar]
  31. Lusso P., Ensoli B., Markham P. D., Ablashi D. V., Salahuddin S. Z., Tschachler E., Wong-Staal F., Gallo R. C. 1989; Productive dual infection of human CD4+ T lymphocytes by HIV-1 and HHV-6. Nature, London 337:370–373
    [Google Scholar]
  32. McGboch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  33. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Meyne J., Ratliff L. R., Moyzis R. K. 1989; Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences, U.S.A. 86:7049–7053
    [Google Scholar]
  35. Nicholas J., Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of sequence and function between the product of the 52-kilodalton immediate-early gene of herpesvirus saimiri and the BMLF1 -encoded transcriptional effector (EB2) of Epstein-Barr virus. Journal of Virology 62:3250–3257
    [Google Scholar]
  36. Okuno T., Takahashi K., Balachandra K., Shiraki K., Yamanishi K., Takahashi M., Baba K. 1989; Seroepidemiology of human herpesvirus 6 infection in normal children and adults. Journal of Clinical Microbiology 27:651–653
    [Google Scholar]
  37. Pietroboni G. R., Harnett G. B., Bucens M. R., Honess R. W. 1988; Antibody to human herpesvirus 6 in saliva. Lancet i:1059
    [Google Scholar]
  38. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  39. Roizman B. 1990; Herpesviridae: a brief introduction. In Virology 2nd edn. pp. 1787–1794 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  40. Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfield P., Wong-Staal F., Kramarsky B., Gallo R. C. 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601
    [Google Scholar]
  41. Saxinger C., Polesky H., Eby N., Grufferman S., Murphy R., Tegimeir G., Parekh V., Memon S., Hung C. 1988; Antibody reactivity with HBLV (HHV-6) in U.S. populations. Journal of Virological Methods 21:199–208
    [Google Scholar]
  42. Stamminger T., Honess R. W., Young D. F., Bodemer W., Blair E. D., Fleckenstein B. 1987; Organization of terminal reiterations in the virion DNA of herpesvirus saimiri. Journal of General Virology 68:1049–1066
    [Google Scholar]
  43. Takahashi K., Sonoda S., Higashi K., Kondo T., Takahashi H., Takahashi M., Yamanishi K. 1989; Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. Journal of Virology 63:3161–3164
    [Google Scholar]
  44. Tautz D., Renz M. 1983; An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry 132:14–19
    [Google Scholar]
  45. Tedder R. S., Briggs M., Cameron C. H., Honess R. W., Robertson D., Whittle H. 1987; A novel lymphotropic herpesvirus. Lancet ii:390–391
    [Google Scholar]
  46. Vogelstein B., Gillespie D. 1979; Preparative and analytical purification of DNA from agarose. Proceedings of the National Academy of Sciences, U.S.A 76:615–619
    [Google Scholar]
  47. Ward K. N., Gray J. J., Efstathiou S. 1989; Brief report: primary human herpesvirus 6 infection in a patient following liver transplantation from a seropositive donor. Journal of Medical Virology 28:68–72
    [Google Scholar]
  48. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet i:1065–1067
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-1-157
Loading
/content/journal/jgv/10.1099/0022-1317-72-1-157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error