1887

Abstract

We have studied the genetic relationships of echoviruses using nucleotide sequencing and hybridization analysis. The nucleotide sequence of the echovirus 11 (EV11) P2 and P3 regions, which encode the nonstructural proteins, was shown to resemble closely those of coxsackie B viruses (CBV) and coxsackievirus A9 (CAV9). EV11, CBV and CAV9 have a similar organization in the 3′ non-coding region when compared to polioviruses and CAV21. In contrast, the 3′ end of EV22 shares only minimal sequence homology with other sequenced enteroviruses, and the 3′ non-coding region has a unique secondary structure. Thirty-three echovirus reference strains were tested by nucleic acid hybridization using cDNA probes from the genomes of EV6, 11, 18 and 22. It was shown that a great majority of the strains belongs to the same subgroup as serotypes 6, 11 and 18, whereas EV22 and EV23 are genetically not closely related to this major subgroup.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-9-2133
1990-09-01
2022-12-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/9/JV0710092133.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-9-2133&mimeType=html&fmt=ahah

References

  1. Argos P., Kamer G., Nicklin M. J. H., Wimmer E. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research 12:7251–7267
    [Google Scholar]
  2. Auvinen P., Stanway G., Hyypiä T. 1989; Genetic diversity of enterovirus subgroups. Archives of Virology 104:175–186
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences. U.S.A 85:7872–7876
    [Google Scholar]
  4. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  5. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences, U.S.A 84:1814–1818
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  7. Grist N. R., Bell E. J., Assaad F. 1978; Enteroviruses in human disease. Progress in Medical Virology 24:114–157
    [Google Scholar]
  8. Grunstein M., Hogness D. S. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences, U.S.A 72:3961–3965
    [Google Scholar]
  9. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  10. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  11. Hughes P. J., North C., Jellis C. H., Minor P. D., Stanway G. 1988; The nucleotide sequence of human rhinovirus IB: molecular relationships within the rhinovirus genus. Journal of General Virology 69:49–58
    [Google Scholar]
  12. Hughes P. J., North C., Minor P. D., Stanway G. 1989; The complete nucleotide sequence of of coxsackievirus A21. Journal of General Virology 70:2943–2952
    [Google Scholar]
  13. Hyypiä T., Stålhandske P., Vainionpää R., Pettersson U. 1984; Detection of enteroviruses by spot hybridization. Journal of Clinical Microbiology 19:436–438
    [Google Scholar]
  14. Hyypiä T., Maaronen M., Auvinen P., Stålhandske P., Pettersson U., Stanway G., Hughes P., Ryan M., Almond J., Stenvik M., Hovi T. 1987; Nucleic acid sequence relationships between enterovirus serotypes. Molecular and Cellular Probes 1:169–176
    [Google Scholar]
  15. Hyypiä T., Auvinen P., Maaronen M. 1989; Polymerase chain reaction for human picornaviruses. Journal of General Virology 70:3261–3268
    [Google Scholar]
  16. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of coxsackievirus B1. Virology 156:64–73
    [Google Scholar]
  17. Jamison R. M. 1974; An electron microscopic study of the intracellular development of echovirus 22. Archiv für die gesamte Virusforschung 44:184–194
    [Google Scholar]
  18. Jenkins O., Booth J. D., Minor P. D., Almond J. W. 1987; The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae. Journal of General Virology 68:1835–1848
    [Google Scholar]
  19. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  20. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., Vanderwerf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature; London: 291547–553
    [Google Scholar]
  21. Lindberg A. M., Stålhandske P., Pettersson U. 1987; Genome of coxsackievirus B3. Virology 156:50–63
    [Google Scholar]
  22. Moore M. 1982; Enteroviral disease in the United States, 1970-1979. Journal of Infectious Diseases 146:103–108
    [Google Scholar]
  23. Najarian R., Caput D., Gee W., Potter S. J., Renard A., Merryweather J., Nest G. V., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of Sciences, U.S.A 82:2627–2631
    [Google Scholar]
  24. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  25. Sarnow P., Bernstein H. D., Baltimore D. 1986; A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proceedings of the National Academy of Sciences. U.S.A 83:571–575
    [Google Scholar]
  26. Seal L. A., Jamison R. M. 1984; Evidence for secondary structure within the virion RNA of echovirus 22. Journal of Virology 50:641–644
    [Google Scholar]
  27. Stålhandske P., Lindberg M., Pettersson U. 1984; Replicase gene of coxsackievirus B3. Journal of Virology 51:742–746
    [Google Scholar]
  28. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences, U.S.A 84:4767–4771
    [Google Scholar]
  29. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  30. Vihinen M. 1988; An algorithm for simultaneous comparison of several sequences. Cabios 4:89–92
    [Google Scholar]
  31. Werner G., Rosenwirth B., Bauer E., Seifert J.-M., Werner F.-J., Besemer J. 1986; Molecular cloning and sequence determination of the genomic regions encoding protease and genome-linked protein of three picornaviruses. Journal of Virology 57:1084–1093
    [Google Scholar]
  32. Young N. A. 1973; Polioviruses, coxsackieviruses, and echoviruses: comparison of the genomes by RNA hybridization. Journal of Virology 11:832–839
    [Google Scholar]
  33. Zagursky R. J., Baumeister K., Lomax N., Berman M. L. 1985; Rapid and easy sequencing of large linear double-stranded DNA and supercoiled plasmid DNA. Gene Analysis Techniques 2:89–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-9-2133
Loading
/content/journal/jgv/10.1099/0022-1317-71-9-2133
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error