1887

Abstract

Simian immunodeficiency virus from macaques (SIV) is closely related in its structure and biological activity to human immunodeficiency virus, and is the best animal model for the acquired immunodeficiency syndrome. We investigated the kinetics of membrane fusion between SIV and phospholipid vesicles and the effects of various parameters on this process. Purified SIV was labelled with octadecyl rhodamine B chloride, and fusion was continuously monitored as the dilution of the probe in target membranes. These studies show that SIV fusion is strongly dependent upon the liposome composition. Fusion with pure cardiolipin (CL) liposomes is significantly faster than with CL/dioleoylphosphatidylcholine (DOPC) (3:7), phosphatidylserine (PS) or disialoganglioside (G)/ DOPC (1·5:8·5) vesicles. SIV does not fuse appreciably with pure DOPC liposomes. Reduction of pH from 7·5 to 4·5 greatly enhances the rate of SIV fusion with CL, CL/DOPC and PS membranes, but does not affect fusion with DOPC or G/DOPC membranes. Calcium stimulates viral fusion with CL liposomes, but not with CL/DOPC or DOPC liposomes. SIV fuses with human erythrocyte ghost membranes only slowly at reduced pH. Our results indicate that SIV can fuse with membranes lacking the known viral receptor, CD4. Although the mechanism of SIV fusion with model and biological membranes remains to be determined, the fusion activity of SIV shares similarities with other lipid- enveloped viruses such as Sendai and influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-9-1947
1990-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/9/JV0710091947.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-9-1947&mimeType=html&fmt=ahah

References

  1. Aloia R. C., Jensen F. C., Curtain C. C., Mobley P. W., Gordon L. M. 1988; Lipid composition and fluidity of the human immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A 85:900–904
    [Google Scholar]
  2. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Brun-Vézinet F., Rouzioux C., Rozenbaum W., Montagnier L. 1983; Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871
    [Google Scholar]
  3. Bartlett G. R. 1959; Phosphorus assay in column chromatography. Journal of Biological Chemistry 234:466–468
    [Google Scholar]
  4. Bentz J., Nir S., Covell D. G. 1988; Mass action kinetics of virus-cell aggregation and fusion. Biophysical Journal 54:449–462
    [Google Scholar]
  5. Boggs J. M. 1980; Intermolecular hydrogen bonding between lipids: influence on organization and function of lipids in membranes. Canadian Journal of Biochemistry 58:755–770
    [Google Scholar]
  6. Bosch M. L., Earl P. L., Fargnoli K., Picciafuoco S., Giombini F., Wong-Staal F., Franchini G. 1989; Identification of the fusion peptide of primate immunodeficiency viruses. Science 244:694–697
    [Google Scholar]
  7. Centers For Disease Control 1988; 1988 Agent summary statement for human immunodeficiency virus and report on laboratory-acquired infection with human immunodeficiency virus. Morbidity and Mortality Weekly Report 37: Supplement No. S-4 1–17
    [Google Scholar]
  8. Chakrabarti L., Guyader M., Alizon M., Daniel M. D., Desrosiers R. C., Tiollais P., Sonigo P. 1987; Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature; London: 328543–547
    [Google Scholar]
  9. Clavel F., Guétard D., Brun-Vézinet F., Chamaret S., Rey M. -A., Santos-Ferreira M. O., Laurent A. G., Dauguet C., Katlama C., Rouzioux C., Klatzmann D., Champalimaud J. L., Montagnier L. 1986; Isolation of a new human retrovirus from West African patients with AIDS. Science 233:343–346
    [Google Scholar]
  10. Dalgleish A. G., Beverly P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T-4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature; London: 312763–766
    [Google Scholar]
  11. Desrosiers R. C. 1988; Simian immunodeficiency viruses. Annual Review of Microbiology 42:607–625
    [Google Scholar]
  12. Dodge J. T., Mitchell C., Hanahan D. J. 1963; The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Archives of Biochemistry and Biophysics 100:119–130
    [Google Scholar]
  13. Doms R. W., Helenius A., White J. 1985; Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  14. Düzgüneş N., Bentz J. 1988; Fluorescence assays for membrane fusion. In Spectroscopic Membrane Probes I pp. 117–159 Loew L. M. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  15. Düzgüneş N., Wilschut J., Hong K., Fraley R., Perry C., Friend D. S., James T. L., Papahadjopoulos D. 1983; Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation. Biochimica et biophysica acta 732:289–299
    [Google Scholar]
  16. Gallaher W. R. 1987; Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328
    [Google Scholar]
  17. Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Saafai B., White G., Foster P., Markham P. D. 1984; Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS. Science 224:500–503
    [Google Scholar]
  18. Gowda S. D., Stein B. S., Mohagheghpour N., Benike C. J., Engleman E. G. 1989; Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes. Journal of Immunology 142:773–780
    [Google Scholar]
  19. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F. 1989; CD4- independent infection of human neural cells by human immunodeficiency virus type 1. Journal of Virology 63:2527–2533
    [Google Scholar]
  20. Helenius A., Kartenbeck J., Simons K., Fries E. 1980; On the entry of Semliki Forest virus into BHK-21 cells. Journal of Cell Biology 84:404–420
    [Google Scholar]
  21. Hockley D. J., Wood R. D., Jacobs J. P., Garrett A. J. 1988; Electron microscopy of human immunodeficiency virus. Journal of General Virology 69:2455–2469
    [Google Scholar]
  22. Hoekstra D., Kok J. W. 1989; Entry mechanisms of enveloped viruses.Implications for fusion of intracellular membranes. Bioscience Reports 9:273–305
    [Google Scholar]
  23. Hoekstra D., De Boer T., Klappe K., Wilschut J. 1984; Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681
    [Google Scholar]
  24. Hoekstra D., Klappe K., De Boer T., Wilschut J. 1985; Characterization of the fusogenic properties of Sendai virus: kinetics of fusion with erythrocyte membranes. Biochemistry 24:4739–4745
    [Google Scholar]
  25. Hoffman A. D., Banapour B., Levy J. A. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 147:326–335
    [Google Scholar]
  26. Hsu M. -C., Scheid A., Choppin P. W. 1983; Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology 126:361–369
    [Google Scholar]
  27. Kannagi M., Yetz J. M., Letvin N. L. 1985; In vitro growth characteristics of simian T-lymphotropic virus type III. Proceedings of the National Academy of Sciences, U.S.A 82:7053–7057
    [Google Scholar]
  28. Kielian M. C., Helenius A. 1984; Role of cholesterol in fusion of Semliki Forest virus with membranes. Journal of Virology 52:281–283
    [Google Scholar]
  29. Klappe K., Wilschut J., Nir S., Hoekstra D. 1986; Parameters affecting fusion between Sendai virus and liposomes.Role of viral proteins, liposome composition, and pH. Biochemistry 25:8252–8260
    [Google Scholar]
  30. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guétard D., Hercend T., Gluckman J. -C., Montagnier L. 1984; T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature; London: 312767–768
    [Google Scholar]
  31. Koenig S., Hirsch V. M., Olmsted R. A., Powell D., Maury W., Rabson A., Fauci A. S., Purcell R. H., Johnson P. R. 1989; Selective infection of human CD4+ cells by simian immunodeficiency virus: productive infection associated with envelope glycoprotein-induced fusion. Proceedings of the National Academy of Sciences, U.S.A 86:2443–2447
    [Google Scholar]
  32. Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W. C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. 1987; Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355
    [Google Scholar]
  33. Larsen C., Alford D., Young L., Lee K-D., McGraw T. P., Düzgüneş N. 1989; Fusion of simian immunodeficiency virus (SIVmac) with liposomes and erythrocyte ghosts. Abstracts of the V International Conference on AIDS p. 634 Montreal, Canada:
    [Google Scholar]
  34. Lasky L. A., Nakamura G., Smith D. H., Fennie C.Shimasaki, Shimasaki C., Patzer E., Berman P., Gregory T., Capon D. J. 1987; Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 50:975–985
    [Google Scholar]
  35. Letvin N. L., Daniel M. D., Sehgal P. K., Desrosiers R. C., Hunt R. D., Waldron L. M., Mackey J. J., Schmidt D. K., Chalifoux L. V., King N. W. 1985; Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science 230:71–73
    [Google Scholar]
  36. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oshiro L. S. 1984; Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840–842
    [Google Scholar]
  37. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong-Staal F., Steimer K. S., Engleman E. G. 1986a; Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature; London: 323725–728
    [Google Scholar]
  38. Lifson J. D., Reyes G. R., McGrath M. S., Stein B. S., Engleman E. G. 1986b; AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127
    [Google Scholar]
  39. Loyter A., Citovsky V., Blumenthal R. 1988; The use of fluorescence dequenching measurements to follow viral membrane fusion events. Methods of Biochemical Analysis 33:129–164
    [Google Scholar]
  40. McClure M. O., Marsh M., Weiss R. A. 1988; Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO Journal 7:513–518
    [Google Scholar]
  41. McDougal J. S., Mawle A., Cort S. P., Nicholson J. K. A., Cross G. D., Scheppler-Campbell J. A., Hicks D., Sligh J. 1985; Cellular tropism of the human retrovirus HTLV-III/LAV. Journal of Immunology 135:3151–3162
    [Google Scholar]
  42. McDougal J. S., Kennedy M. S., Sligh J. M., Cort S. P., Mawle A., Nicholson J. K. A. 1986; Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231:382–385
    [Google Scholar]
  43. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  44. Maddon P. J., McDougal J. S., Clapham P. R., Dalgleish A. G., Jamal S., Weiss R. A., Axel R. 1988; HIV infection does not require endocytosis of its receptor, CD4. Cell 54:865–874
    [Google Scholar]
  45. Marsh M., Dalgleish A. 1987; How do human immunodeficiency viruses enter cells. Immunology Today 8:369–371
    [Google Scholar]
  46. Marsh M., Bolzau E., Helenius A. 1983; Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32:931–940
    [Google Scholar]
  47. Misra R., Venables P. J. W., Plater-Zyberk C., Watkins P. F., Maini R. N. 1989; Anti-cardiolipin antibodies in infectious mononucleosis react with the membrane of activated lymphocytes. Clinical and Experimental Immunology 75:35–40
    [Google Scholar]
  48. Munn R. J., Marx P. A., Yamamoto J. K., Gardner M. B. 1985; Ultrastructural comparison of the retroviruses associated with human and simian acquired immunodeficiency syndromes. Laboratory Investigation 53:194–199
    [Google Scholar]
  49. Nir S., Stegmann T., Wilschut J. 1986a; Fusion of influenza virus with cardiolipin liposomes at low pH: mass action analysis of kinetics and fusion. Biochemistry 25:257–266
    [Google Scholar]
  50. Nir S., Klappe K., Hoekstra D. 1986b; Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: application of a mass action kinetic model. Biochemistry 25:2155–2161
    [Google Scholar]
  51. Ohnishi S. -I. 1988; Fusion of viral envelopes with cellular membranes. In Membrane Fusion in Fertilization, Cellular Transport and Viral Infection pp. 257–296 Düzgüneş N., Bronner F. Edited by San Diego: Academic Press;
    [Google Scholar]
  52. Pauza C. D., Price T. M. 1988; Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis. Journal of Cell Biology 107:959–968
    [Google Scholar]
  53. Poste G., Pasternak C. A. 1978; Virus-induced cell fusion. Cell Surface Reviews 5:306–349
    [Google Scholar]
  54. Sattentau Q. J., Weiss R. A. 1988; The CD4 antigen: physiological ligand and HIV receptor. Cell 52:631–633
    [Google Scholar]
  55. Sinangil F., Loyter A., Volsky D. J. 1988; Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching. FEBS Letters 239:88–92
    [Google Scholar]
  56. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150:76–85
    [Google Scholar]
  57. Sodroski J., Goh W. C., Rosen C., Campbell K., Haseltine W. 1986; Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature; London: 322470–474
    [Google Scholar]
  58. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1985; Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24:3107–3113
    [Google Scholar]
  59. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1986; Fusion activity of influenza virus.A comparison between biological and artificial target membrane vesicles. Journal of Biological Chemistry 261:10966–10969
    [Google Scholar]
  60. Stegmann T., Nir S., Wilschut J. 1989; Membrane fusion activity of influenza virus.Effects of gangliosides and negatively charged phospholipids in target liposomes. Biochemistry 28:1698–1704
    [Google Scholar]
  61. Stein B. S., Gowda S. D., Lifson J. D., Penhallow R. C., Bensch K. G., Engleman E. G. 1987; pH-Independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49:659–668
    [Google Scholar]
  62. Szoka F., Olson F., Heath T., Vail W., Mayhew E., Papahadjopoulos D. 1980; Preparation of unilamellar liposomes of intermediate size (0·1–0·2 μm) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochimica et biophysica acta 601:559–571
    [Google Scholar]
  63. Tateno M., Gonzalez-Scarano F., Levy J. A. 1989; Human immunodeficiency virus can infect CD4-negative human fibroblas- toid cells. Proceedings of the National Academy of Sciences, U.S.A 86:4287–4290
    [Google Scholar]
  64. Tsui F. C., Ojcius D. M., Hubbell W. L. 1986; The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophysical Journal 49:459–468
    [Google Scholar]
  65. Weber J., Clapham P., McKeating J., Stratton M., Robey E., Weiss R. 1989; Infection of brain cells by diverse human immunodeficiency virus isolates: roles of CD4 as receptor. Journal of General Virology 70:2653–2660
    [Google Scholar]
  66. White J., Helenius A. 1980; pH-Dependent fusion between the Semliki Forest virus membrane and liposomes. Proceedings of the National Academy of Sciences, U.S.A 77:3273–3277
    [Google Scholar]
  67. White J., Matlin K., Helenius A. 1981; Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses. Journal of Cell Biology 89:674–679
    [Google Scholar]
  68. White J., Kartenbeck J., Helenius A. 1982; Membrane fusion activity of influenza virus. EMBO Journal 1:217–222
    [Google Scholar]
  69. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  70. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-9-1947
Loading
/content/journal/jgv/10.1099/0022-1317-71-9-1947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error