The Nucleotide Sequence of an Equine Herpesvirus 4 Gene Homologue of the Herpes Simplex Virus 1 Glycoprotein H Gene Free

Abstract

The equine herpesvirus 4 (EHV-4) gene glycoprotein H (gH) gene homologue was localized by virtue of the conserved genomic position of this gene throughout members of the herpesvirus family. The gene maps immediately downstream of the thymidine kinase gene at approximately 0.49 to 0.51 map units within genomic fragment HI C. The EHV-4 gH primary translation product is predicted to be a polypeptide of 94100, 855 amino acids long, which possesses features characteristic of a membrane glycoprotein, namely an N-terminal signal sequence, a large hydrophilic domain containing 11 putative -linked glycosylation sites, a C-terminal transmembrane domain, and a charged cytoplasmic tail. Comparison to other herpesvirus glycoproteins revealed identities of 85%, 26% and 32% with the gH counterparts of the alphaherpesviruses EHV-1, herpes simplex virus 1 and varicella-zoster virus, respectively, and of 17% and 18% with those of human cytomegalovirus, herpesvirus saimiri and Epstein-Barr virus. The EHV-4 gH exhibits features previously reported to be conserved throughout the gH polypeptides of herpesviruses of all three subgroups. A region of direct repeat elements and a possible origin of DNA replication are located immediately downstream of the gH gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-8-1793
1990-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/8/JV0710081793.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-8-1793&mimeType=html&fmt=ahah

References

  1. Allen G. P., Bryans J. T. 1986; Molecular epizootiology, pathogenesis and prophylaxis of equine herpesvirus-1 infections. In Progress in Veterinary Microbiology and Immunology 2 pp Pandey R. Edited by Basel: S. Karger;
    [Google Scholar]
  2. Allen G. P., Coogle L. D. 1988; Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gpl3) with homology to herpes simplex virus glycoprotein C. Journal of Virology 62:2850–2858
    [Google Scholar]
  3. Allen G. P., Yeargan M. R. 1987; Use of λgtl 1 and monoclonal antibodies to map the genes for the 6 major glycoproteins of equine herpesvirus 1. Journal of Virology 61:2454–2461
    [Google Scholar]
  4. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  5. Baumann R. P., Yalamanchili V. R. R., O’Callaghan D. J. 1989; Functional mapping and DNA sequence of an equine herpesvirus 1 origin of replication. Journal of Virology 63:1275–1283
    [Google Scholar]
  6. Birnstiel M. L., Busslinger M., Strub K. 1985 Transcription termination and 3ʹ processing: the end is in site! Cell 41:349–359
    [Google Scholar]
  7. Bridges C. G., Ledger N., Edington N. 1988; The characterisation of equine herpes virus-l-infected cell polypeptides recognised by equine lymphocytes. Immunology 63:193–198
    [Google Scholar]
  8. Buckmaster E. A., Gompels U., Minson A. 1984; Characterization and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103molecular weight. Virology 139:408–413
    [Google Scholar]
  9. Carter V. C., Schaffer P. A., Tevethia S. S. 1981; The involvement of herpes simplex virus type 1 glycoproteins in cell- mediated immunity. Journal of Immunology 126:1655–1660
    [Google Scholar]
  10. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  11. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson A. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  12. Cullinane A. A., Rixon F. J., Davison A. J. 1988; Characterization of the genome of equine herpesvirus 1 subtype 2. Journal of General Virology 69:1575–1590
    [Google Scholar]
  13. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  14. Desai P. J., Schaffer P. A., Minson A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  15. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. Journal of Virology 63:3435–3443
    [Google Scholar]
  16. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  17. Gompels U., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  18. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  19. Gretch D. R., Kari B., Rasmussen L., Gehrz R. C., Stinski M. F. 1988; Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. Journal of Virology 62:875–881
    [Google Scholar]
  20. Heineman T., Gong M., Sample J., Kieff E. 1988; Identification of the Epstein-Barr virus gp85 gene. Journal of Virology 62:1101–1107
    [Google Scholar]
  21. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences U.S.A.: 783824–3828
    [Google Scholar]
  22. Keller P. M., Davison A. J., Lowe R. S., Riemen M. W., Ellis R. W. 1987; Identification and sequence of the gene encoding gpIII, a major glycoprotein of varicella-zoster virus. Virology 157:526–533
    [Google Scholar]
  23. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research 12:857–872
    [Google Scholar]
  24. Lockshon D., Galloway D. A. 1986; Cloning and characterization of oril2, a large palindromic DNA replication origin of herpes simplex virus type 2. Journal of Virology 58:513–521
    [Google Scholar]
  25. McGeoch D. J., Davison A. J. 1986; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genome of varicella-zoster virus and Epstein-Barr virus. Nucleic Acids Research 14:4281–4292
    [Google Scholar]
  26. McLauchlan J., Gaffney D., Whitton J. L., Clements J. B. 1985; The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3ʹ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  27. Meredith D. M., Stocks J.-M., Whittaker G. R., Halliburton I. W., Snowden B. W., Killington R. A. 1989; Identification of the gB homologues of equine herpesvirus types 1 and 4 as disulphide-linked heterodimers and their characterization using monoclonal antibodies. Journal of General Virology 70:1161–1172
    [Google Scholar]
  28. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology 62:2366–2372
    [Google Scholar]
  29. Montalvo E. A., Grose C. 1986; Neutralization epitope of varicella-zoster virus on native viral glycoprotein gpl 18 (VZV glycoprotein gpIII). Virology 149:230–241
    [Google Scholar]
  30. Nicolson L., Onions D. E. 1990; The nucleotide sequence of the equine herpesvirus 4 (EHV-4) gC gene homologue. Virology in press
    [Google Scholar]
  31. Nicolson L., Cullinane A. A., Onions D. E. 1990; The nucleotide sequence of the equine herpesvirus 4 thymidine kinase gene. Journal of General Virology 71:1801–1805
    [Google Scholar]
  32. Oba D. E., Hutt-Fletcher L. M. 1988; Induction of antibodies to the Epstein-Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF2 open reading frame. Journal of Virology 62:1108–1114
    [Google Scholar]
  33. Proudfoot N. J., Brownlee G. G. 1976; 3ʹ Non-coding region sequences in eukaryotic messenger RNA. Nature; London: 263211–214
    [Google Scholar]
  34. Queen C., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  35. Riggio M. P., Cullinane A. A., Onions D. E. 1989; Identification and nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4. Journal of Virology 63:1123–1133
    [Google Scholar]
  36. Robertson G. R., Whalley J. M. 1988; Evolution of the herpes thymidine kinase gene: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell- encoded thymidylate kinase. Nucleic Acids Research 16:11303–11317
    [Google Scholar]
  37. Rosenthal K. L., Smiley J. R., South S., Johnson D. C. 1987; Cells expressing herpes simplex virus glycoprotein gC but not gB, gD, or gE are recognised by murine virus-specific cytotoxic T lymphocytes. Journal of Virology 61:2438–2447
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  39. Spear P. G. 1985; Glycoproteins specified by herpes simplex viruses. In The Herpesviruses 3 pp 315–356 Roizman B. Edited by New York: Plenum Press;
    [Google Scholar]
  40. Stokes A., Allen G. P., Pullen L. A., Murray P. K. 1989; A hamster model of equine herpesvirus type 1 (EHV-1) infection; passive protection by monoclonal antibodies to EHV-1 glycoproteins 13, 14 and 17/18. Journal of General Virology 70:1173–1183
    [Google Scholar]
  41. Stow N. D., Davison A. J. 1986; Identification of a varicella- zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. Journal of General Virology 67:1613–1623
    [Google Scholar]
  42. Stow N. D., McMonagle E. C. 1983; Characterization of the TRs/IRs origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  43. Turtinen L. W., Allen G. P. 1982; Identification of the envelope surface glycoproteins of equine herpesvirus type 1. Journal of General Virology 63:481–485
    [Google Scholar]
  44. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  45. Whalley J. M., Robertson G. R., Scott N. A., Hudson G. C., Bell C. W., Woodworth L. M. 1989; Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB. Journal of General Virology 70:383–394 corrigendum 3513
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-8-1793
Loading
/content/journal/jgv/10.1099/0022-1317-71-8-1793
Loading

Data & Media loading...

Most cited Most Cited RSS feed