1887

Abstract

We have determined the nucleotide sequence of two genes in the unique short region of the genome of pseudorabies virus (PRV). Near the internal repeat, upstream of the gene encoding glycoprotein gX, we identified an open reading frame (ORF) encoding a protein of 390 amino acids. We designated this gene PK because the predicted protein contains most of the conserved motifs of a eukaryotic protein kinase. The protein shares amino acid homology with the protein kinases encoded by gene US3 of herpes simplex virus type 1 (HSV-1) and gene 66 of varicella-zoster virus. Near the terminal repeat, downstream of a gene encoding an 11K protein, we identified an ORF encoding a protein of 256 amino acids. We designated this gene 28K, the of the predicted protein. Part of the amino acid sequence of 28K is homologous to the predicted US2 protein of HSV-1. Northern blot analysis revealed a 2·7 kb mRNA encoding the putative protein kinase and a 1·2 kb mRNA encoding the 28K protein in PRV-infected cells. The 5′ ends of the mRNAs were mapped by primer extension. Two transcriptional start sites were identified for the PK mRNA: a minor start site immediately upstream of the ORF and a major start site (>95% of the mRNA) within the ORF, 64 nucleotides upstream of an internal ATG codon. A single transcriptional start site was identified for the 28K mRNA immediately upstream of the ORF. Immunoblot analysis with anti-peptide sera revealed that, in cells infected with PRV, the PK gene was translated into two proteins with s of 53K and 4IK, and the 28K gene into a single protein with an of 28K.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-8-1747
1990-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/8/JV0710081747.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-8-1747&mimeType=html&fmt=ahah

References

  1. Baskerville A., McFerran J. B., Dow C. 1973; Aujeszky’s disease in pigs. Veterinary Bulletin 43:465–480
    [Google Scholar]
  2. Bassiri R. M., Dvorak J., Utiger R. D. 1979; Thyrotropinreleasing hormone. In Methods of Hormone Radioimmunoassay pp 46–47 Jaffe B. M., Berman H. R. Edited by New York: Academic Press;
    [Google Scholar]
  3. Ben-Porat T., Rixon F. J., Blankenship M. L. 1979; Analysis of the structure of the genome of pseudorabies virus. Virology 95:285–294
    [Google Scholar]
  4. Davison A. J. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  5. Davison A. J., McGeoch D. J. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  6. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  7. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. Frame M. C., Purves F. C., McGeoch D.J, Marsden H. S., Leader D. P. 1987; Identification of the herpes simplex virus protein kinase as the product of viral gene US3. Journal of General Virology 68:2699–2704
    [Google Scholar]
  10. Hanks S. K., Quinn A. M., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  11. Kasza L., Shadduck J. A., Christofinis G. J. 1972; Establishment, viral susceptibility, and biological characteristics of a swine kidney cell line SK-6. Research in Veterinary Science 13:46–51
    [Google Scholar]
  12. Kozak M. 1987; At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of Molecular Biology 196:947–950
    [Google Scholar]
  13. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  14. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1747
    [Google Scholar]
  15. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the Hindlll lregion in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  16. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  17. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Mettenleiter T. C., Lukacs N., Rziha H.-J. 1985; Pseudorabies virus avirulent strains fail to express a major glycoprotein. Journal of Virology 56:307–311
    [Google Scholar]
  19. Murchie M.-J., McGeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0·950 to 0·978). Journal of General Virology 62:1–15
    [Google Scholar]
  20. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  21. Petrovskis E. A., Post L. E. 1987; A small open reading frame in pseudorabies virus and implications for evolutionary relationships between herpesviruses. Virology 159:193–195
    [Google Scholar]
  22. Petrovskis E. A., Timmins J. G., Armentrout M. A., Marchioli C. C., Yancey R. J., Post L. E. 1986a; DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without Y-linked glycosylation. Journal of Virology 59:216–223
    [Google Scholar]
  23. Petrovskis E. A., Timmins J. G., Post L. E. 1986b; Use of lambda-gtll to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  24. Petrovskis E. A., Timmins J. G., Gierman T. M., Post L. E. 1986c; Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63. Journal of Virology 60:1166–1169
    [Google Scholar]
  25. Purves F. C., Deana A. D., Marchiori F., Leader D. P., Pinna L. A. 1986; The substrate specificity of the protein kinase induced in cells infected with herpesviruses: studies with synthetic substrates indicate structural requirements distinct from other protein kinases. Biochimica et biophysica acta 889:208–215
    [Google Scholar]
  26. Purves F. C., Katan M., Leader D. P. 1987; Complete purification of the pseudorabies virus protein kinase. European Journal of Biochemistry 167:507–512
    [Google Scholar]
  27. Quint W., Gielkens A., Van Oirschot J., Berns A., Cuypers H. T. 1987; Construction and characterization of deletion mutants of pseudorabies virus: a new generation of 'live' vaccines. Journal of General Virology 68:523–534
    [Google Scholar]
  28. Rea T. J., Timmins J. G., Long G. W., Post L. E. 1985; Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. Journal of Virology 54:21–29
    [Google Scholar]
  29. Rixon F. J., McGeoch D. J. 1985; Detailed analysis of the mRNAs mapping in the short unique region of herpes simplex virus type 1. Nucleic Acids Research 13:953–973
    [Google Scholar]
  30. Rubenstein A. S., Kaplan A. S. 1975; Electron microscopic studies of the DNA of defective and standard pseudorabies virions. Virology 66:385–392
    [Google Scholar]
  31. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in a single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  32. Selten G., Cuypers H. T., Berns A. 1985; Proviral activation of the putative oncogene pim-1 in MuLV-induced T-cell lymphomas. EMBO Journal 4:1793–1798
    [Google Scholar]
  33. Simon A., Mettenleiter T. C., Rziha H.-J. 1989; Pseudorabies virus displays variable numbers of a repeat unit adjacent to the end of the glycoprotein gll gene. Journal of General Virology 70:1239–1246
    [Google Scholar]
  34. Wagner E. K. 1983; Transcription patterns in HSV infections. In Advances in Viral Oncology pp 239–270 Klein G. Edited by New York: Raven Press;
    [Google Scholar]
  35. Watson R. J., Umene K., Enquist L. W. 1981; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  36. Westaway D., Goodman P. A., Mirenda C. A., McKinley M. P., Carlson G. A., Prusiner S. B. 1987; Distinct prion proteins in short and long scrapie incubation period mice. Cell 51:651–662
    [Google Scholar]
  37. Whitton J. L., Clements J. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-8-1747
Loading
/content/journal/jgv/10.1099/0022-1317-71-8-1747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error